Heparin InducedThrombocytopenia

H C Chua, N Venketasubramanian, H Tjia

Department of
Neurology
National Neuroscience Institute
11, Jalan Tan
Tock Seng
Singapore 308433
H C Chua, FAMS, MBBS, MRCP (UK) Consultant

N Venketasubramanian, FAMS, MBBS, MMed (Int Med) Senior Consultant
H Tjia, FAMS, MBBS, MMed (Int Med) Senior Consultant and Head

Correspondence To:
Dr Chua Hoe Chin
Tel: (65) 3577171
Fax: (65) 3577137

Abstract

Background: Heparin is a widely used antithrombotic agent for treatment of ischemic cerebrovascular disease. One of its most important side-effects is thrombocytopenia which may lead to potentially life-threatening haemorrhagic and thrombotic complications.

Methods: We performed a prospective study to determine the frequency of heparin induced thrombocytopenia. Heparin induced thrombocytopenia is defined as a platelet count of less than $150 \times 10^{3} / \mathrm{mm}^{3}$ or a decrease in platelet count to 30\% to 50\% from baseline. Daily platelet counts were obtained in 50 adult patients who were treated with the same lot of intravenous bovine heparin. Two patients (4\%) developed thrombocytopenia with onset varying from four to seven days after heparin was started. In both cases, platelet counts returned to baseline levels three to five days after cessation of therapy. No ischemic or haemorrhagic complications occurred.

Conclusion: Heparin induced thrombocytopenia is a common complication of intravenous heparin treatment. Clinicians treating patients with heparin should determine platelet counts at baseline and henceforth at regular intervals beginning from the fifth day of therapy. We recommend commencement of warfarin therapy concurrently with heparin infusion and discontinuation of heparin once warfarin has become effective. All doctors must be vigilant to this reversible common complication.

Keywords: heparin, thrombocytopenia, platelet, cardiovascular, stroke

Singapore M ed J 2001 Vol 42(5):200-202

INTRODUCTION

H eparin has been used as an anti-thrombotic agent for more than 50 years ${ }^{(1,2)}$. O ne of its most important side effects is thrombocytopenia. The reported
incidence varied from 1 to $31 \%{ }^{(3-7)}$. Heparin induced thrombocytopenia (HIT) may lead to haemorrhagic and thrombotic complications which are potentially life threatening ${ }^{(8,9)}$. H owever HIT is underdiagnosed due to a lack of awareness by many doctors. In our institution, we treat many patients with ischemic cerebrovascular disease with heparin. Hence we decided to conduct a study on the incidence of HIT.

METHOD

This is a prospective study in Tan Tock Seng H ospital conducted over six months from J uly 1996 to D ecember 1996. A ll patients with ischemic stroke who received intravenous heparin for a minimum of five days were included in the study. The diagnosis of ischemic stroke was established according to standard criteria ${ }^{(10)}$. Each patient was followed through the entire period of hospitalisation. A II medications concurrently administered during the study period were noted, specifically cimetidine, thiazides and sulphonamides.

THERAPY

Continuous intravenous bovine heparin (B . Braun M elsungen A G, Germany) was initiated at a dose of 5000 units six hourly using an infusion pump. The goal of therapy was to achieve a PTT of 1.5 to $2 x$ control.

LABORATORYTESTS

B aseline haemoglobin, haematocrit, leucocyte count, platelet count, prothrombin time and thromboplastin time were obtained before starting heparin. Subsequently, they were monitored daily until therapy was discontinued. A coagulopathy screen comprising serum fibrinogen, D-dimers and soluble monomers was obtained if thrombocytopenia was accompanied by sepsis.

HEPARIN INDUCEDTHROMBOCYTOPENIA

The diagnosis of HIT is based on clinical criteria and platelet count and not on laboratory testing. M ost authors define thrombocytopenia as a platelet count of less than $150 \times 10^{3} / \mathrm{mm}^{3}$ or a decrease in platelet count to 30% to 50% from baseline ${ }^{(5,9,11-15)}$. There is no given

Table I. Characteristic features of patients with heparin induced thrombocytopenia

| No. Sex | Age | Diagnosis | Baseline
 Platelet
 count
 $\left(10^{3} / \mathrm{mm}^{3}\right)$ | Onset of
 thrombo-
 cytopenia
 (days) | Lowest
 platelet
 count
 $\left(10^{3} / \mathrm{mm}^{3}\right)$ | Day of
 lowest
 platelet
 count | \% drop in
 platelet
 count | Days to
 recovery | Ischemic
 events | Outcome |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

platelet count at which a diagnosis of HIT can be made. Other potential causes of thrombocytopenia like disseminated intravascular coagulopathy must be excluded.

RESULTS

Fifty adult patients with age ranging from 31 to 82 years (median 58) were studied. Thirty had cerebral infarcts, 14 had brainstem infarcts and six had transient ischemic attacks (TIA s). They were anticoagulated with intravenous heparin for 8 ± 2.5 days.

All patients had a baseline platelet count more than $150 \times 10^{3} / \mathrm{mm}^{3}$. Two patients (4\%) developed heparin-induced thrombocytopenia (Table I). The onset of thrombocytopenia ranged from four to seven days after heparin was started, with a corresponding decrease in platelet count from 31 to 56%. Platelet counts returned to normal range three to five days after cessation of heparin therapy. There were no ischemic events and all patients survived.

In 36 patients (72%), the platelet count decreased from 8 to 24% of baseline values between days 1 to 5 of heparin therapy (mean 2 ± 1.5). A nticoagulation was continued and platelet counts normalised within 2 to 5 days (mean 3 ± 1.5). These patients did not have any haemorrhagic or thrombotic events.

DISCUSSION

HIT is a common complication of patients treated with intravenous heparin therapy, occurring in 4% of patients who received this drug. We conclude that the fall in platelet count is due to heparin therapy because of the following reasons: firstly, platelet counts fell progressively during anticoagulation and returned to baseline levels after heparin was discontinued. Secondly, these patients were not receiving any drugs which might cause thrombocytopenia like thiazides, cimetidine and sulphonamides. Thirdly, all patients were well and not in disseminated intravascular coagulopathy.

A literature survey revealed that the incidence of HIT varied widely among different authors. This is due to several variables that exist between studies, of which the most important is the definition of thrombocytopenia. Whereas some used a platelet
cutoff level of $150 \times 10^{3} / \mathrm{mm}^{3}(5,9,11-15)$ others used $100 \times 10^{3} / \mathrm{mm}^{3(6-8,16-19)}$. In addition, different types of heparin (bovine versus porcine) were used and each type came from a different lot. In our study, we resolved this problem by using only one lot of bovine heparin. The duration of heparin therapy and frequency of platelet count determination was not uniform among different investigators; it ranged from three to ten days. This is important because thrombocytopenia is typically delayed in onset (occurring five or more days after the start of heparin therapy) and H IT may not be detected in patients who are monitored for only a few days. Other variable factors include the route of heparin administration (continuous or intermittent intravenous infusion or subcutaneous), the dose of heparin used and the diluent and tubing used to administer heparin ${ }^{(18)}$.

The pathogenesis of HIT may include heparindependent immunoglobulin G (IgG) antibodies that activate platelets through their Fc receptors, in the presence of small amounts of heparin ${ }^{(20,21)}$. Heparin may react with platelet factor 4 (PF4) which is normally present on the surface of endothelial cells or released from circulating platelets. A PF4-heparin complex is then formed which binds with specific IgG antibodies to form a PF4-heparin-IgG immune complex. This immune complex binds to the platelet Fc receptors, resulting in platelet activation, aggregation and subsequent platelet and endothelial cell destruction. The binding of PF4 with circulating heparin perpetuates the cycle of ongoing platelet activation and destruction. The PF4, especially when present in excess amounts that can complex with heparin, binds with heparin-like molecules on the surface of the endothelial cells (eg glycosaminoglycans). This binding can result in immune-mediated cell injury with an increased risk for thrombotic events and disseminated intravascular coagulopathy ${ }^{(8,9)}$.

In addition to HIT, mild thrombocytopenia of early onset may occur after commencement of heparin infusion. This is due to an intrinsic pro-aggregatory effect of heparin and is a benign condition ${ }^{(9,55,18,22)}$.

Clinicians treating patients with heparin should be aware of the risk of heparin-induced thrombocytopenia
and determine platelet counts at baseline, day 5 of therapy and at regular intervals henceforth.

Our approach to patients who require anticoagulation for ischemic cerebrovascular disease is to commence warfarin therapy concomitant with intravenous heparin infusion. Warfarin requires 48 to 72 hours to reach therapeutic levels. We maintain the patient on heparin for the minimum interval to allow warfarin to become effective. This strategy ensures expeditious anticoagulation while avoiding HIT, since HIT usually occurs seven to 14 days following exposure to heparin. Once HIT is diagnosed, heparin must be discontinued immediately ${ }^{(5,19,23)}$. If continued anticoagulation is required and warfarin treatment has not reached therapeutic levels, alternative antithrombotic agents may be used in the interim period. These include ancrod, dextran and heparinoids ${ }^{(8,9,24)}$. U nfortunately none had been proven to be uniformly effective.

CONCLUSION

HIT occurred in 4\% of patients treated with intravenous heparin. No thrombotic or haemorrhagic complications occurred. In all cases platelet counts returned to baseline levels after cessation of heparin therapy. Clinicians treating patients with heparin should determine platelet counts at baseline and henceforth at regular intervals beginning from the fifth day of therapy. We recommend commencement of warfarin therapy concomitant with intravenous heparin and discontinuation of heparin once warfarin has become effective. A ll doctors must be vigilant to this reversible common complication.

REFERENCES

1. Copley AL, Robb TP. The effect of heparin in vivo on the platelet count in mice and dogs. Am J Clin Pathol 1942; 12:563-70.
2. Fidlar E, Jaques LB. The effect of commercial heparin on the platelet count. J Lab Clin Med 1948; 33:1410-23.
3. Malcolm ID, Wigmore TA, Steinbrecher VP. Heparin-associated thrombocytopenia: low incidence in 104 patients treated with heparin of intestinal mucosa origin. Can Med Assoc J 1979; 120:1086-8.
4. Powers PJ, Cuthbert D, Hirsh J. Thrombocytopenia found uncommonly during heparin therapy. JAMA 1979; 241:2396-7.
5. Warkentin TE, Levine MN, Hirsh J, Horsewood P, Roberts RS, Gent M, Kelton JG. Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. NEJM 1995; 332:1330-5.
6. Bell WR, Tomasulo PA, Alving BM, Duffy TP. Thrombocytopenia occurring during the administration of heparin. Ann Intern Med 1976; 85:155-60.
7. Eika C, Godal HC, Laake K, Hamborg T. Low incidence of thrombocytopenia during treatment with hog mucosa and beef lung heparin. Scand J Haematol 1980; 25:19-24.
8. Gupta AK, Kovacs MJ, Sauder DN. Heparin induced thrombocytopenia. Ann Pharmacother 1998; 32:55-9.
9. Walenga JM, Bick RL. Heparin-induced thrombocytopenia, paradoxical thromboembolism, and other side effects of heparin therapy. Med Clin North Am 1998; 82:635-58.
10. Committee on Cerebrovascular Diseases. A classification and outline of cerebrovascular diseases. II. Stroke 1975; 6:563-4
11. Nelson JC, Lerner RG, Goldstein R, Cagin NA. Heparin-induced thrombocytopenia. Arch Intern Med 1978; 138:548-52.
12. Aster RH. Heparin-induced thrombocytopenia and thrombosis. N Engl J Med 1995; 332:1374-6.
13. Powers PJ, Carter C, Kelton J, Hirsh J. Heparin associated thrombocytopenia: a randomized trial comparing beef lung and pork intestinal mucosa heparin. Blood 1981; 58(suppl 1):202-5
14. Lewis BE, Walenga JM, Wallis DE. Anticoagulation with Novastan (argatroban) in patients with heparin-induced thrombocytopenia and heparin-induced thrombocytopenia and thrombosis syndrome. Semin Thromb Hemost 1997; 23:197-202.
15. Ansell J, Slepchuk N, Kumar R, Lopez A, Southard L, Deykin D. Heparin induced thrombocytopenia: a prospective study. Thromb Haemostas 1980; 43:61-5.
16. Gallus AS, Goodall KT, Beswick W, Chesterman CN. Heparin-associated thrombocytopenia: case report and prospective study. Aust NZ J Med 1980; 10:25-31
17. Cipolle RJ, Rodvold KA, Seifert R, Clarens R, Ramirez-Lassepas M. Heparin-associated thrombocytopenia: a prospective evaluation of 211 patients. Ther Drug Monitor 1983; 5:205-11.
18. Ansell JE, Price JM, Shah S, Becker RR. Heparin-induced thrombocytopenia. What is its real frequency? Chest 1985;88:878-82.
19. Warkentin TE, Kelton JG. A 14-year study of Heparin-induced thrombocytopenia. Am J Med 1996; 101:502-7.
20. Kelton JG, Sheridan D, Santos A, Smith J, Steeves K, Smith C, Brown C, Murphy WG. Heparin-induced thrombocytopenia: laboratory studies. Blood 1988; 72:925-30.
21. Chong BH, Fawaz I, Chesterman CV, Berndt MC. Heparin-induced thrombocytopenia: mechanisms of interaction of the heparin-dependent antibody with platelets. Br J Haematol 1989; 73:235-40.
22. Bell WR, Royall RM. Heparin-associated thrombocytopenia: a comparison of three heparin preparations. N Engl J Med 1980; 303:902-7.
23. Natelson EA, Lynch EC, Alfrey CP, Gross JB. Heparin-induced thrombocytopenia. Ann Intern Med 1969; 71:1121-5
24. Cola C, Ansell J. Heparin-induced thrombocytopenia and arterial thrombosis: Alternative therapies. AHJ 1990; 119:368-74.
