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In our last article on linear regression(1), we modeled
the relationship between the systolic blood pressure,
which was a continuous quantitative outcome, with
age, race and smoking status of 55 subjects. If our
interest now is to model the predictors for SBP ≥180
mmHg, a categorical dichotomous outcome (Table I),
then the appropriate multivariate analysis is a logistic
regression.

Table I. Frequency distribution of SBP ≥180 mmHg.

sbp >180

Valid Cumulative
Frequency Percent percent percent

  Valid no 40 72.7 72.7 72.7

yes 15 27.3 27.3 100.00

Total 55 100.0 100.0

Since our interest is to determine the predictors
for SBP ≥180 mmHg, then the numerical coding for
SBP ≥180 mmHg must be “bigger” than that of SBP
<180 mmHg, say 1 & 0, respectively. SPSS will use the
“higher coded” category to be the predicted outcome.

To perform the logistic regression using SPSS, go to
Analyze, Regression, Binary Logistic to get template I.

Template I. Logistic regression.

Put sbp180 (the categorized SBP ≥180 mmHg &
SBP <180 mmHg) in the Dependent box. Put age,
race and smoker in the Covariates box. Click on the
Categorical folder (in template I) to declare smoker
and race as categorical variables (Template II).

Template II. Defining categorical variables.

Since smoker and race are categorical, we will
need a reference group (the default is the “highest
coded” Last category). For race, usually we want the
Chinese to be the reference and our standard coding
is 1 = Chinese, 2 = Indian, 3 = Malay, 4 = Others,
then we got to change the Reference Category (at the
bottom of template II) to First and click on the
Change button (Template III).

Template III. Changing the reference category.

Likewise, we have also changed the reference
category for smoking to First as the coding is 1 = smoker
and 0 = non smoker. The idea is to prepare the output
for “easy interpretation”; that is, comparing the smoker
with the non-smoker of having SBP ≥180. Tables IIa –
IIe (only those of interest) are the output generated
by SPSS when a logistic regression is performed.
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Table IIa. Number of cases in model.

Case processing summary

Unweighted Casesa N Percent

Selected cases Included in analysis 55 100.0

Missing cases 0 .0

Total 55 100.0

Unselected cases 0 .0

Total 55 100.0

a If weight is in effect, see classification table for the total number
of cases.

All 55 cases were included in the analysis.
A subject will be omitted from the analysis if any
one of his data point (for example, age) is missing,
regardless of the availability of the others.

Table IIb. Predicted outcome coding.

Dependent variable encoding

Original value Internal value

No 0

Yes 1

Table IIb is very important. It tells us which category
SPSS is using as the predicted outcome, the higher
coded category (having SBP ≥180 mmHg).

Table IIc. Amount of variation explained by the model.

Model summary

Cox & Snell Nagelkerke
Step -2 Log likelihood R Square R Square

1 40.819 .349 .506

The Nagelkerke R Square shows that about 50%
of the variation in the outcome variable (SBP ≥180)
is explained by this logistic model.

How do we interpret the results in Table IId?
Firstly, the Wald estimates give the “importance”
of the contribution of each variable in the model.
The higher the value, the more “important” it is.

If we are interested in a predictor-model, then
both age and smoking status are important risk factors
to having SBP ≥180, with p-values of 0.001 and 0.020
(given by the Sig column), respectively. The Exp(B)
gives the Odds Ratios. Since age is a quantitative
numerical variable, an increase in one-year in age
has a 23.3% (95% CI 8.9% to 39.5%) increase in
odds of having SBP ≥180. This 23.3% is obtained by
taking Exp(B) for age – 1. To get the 95% CI, in
Template I, click on the Options folder to get
Template IV.

Template IV. Getting the 95% CI for the odds ratios.

Tick on CI for exp(B) for the 95% CI of the estimate.

In Table IId, what is SMOKER(1)? Table IIe
shows the coding for the categorical variables. The
reference group for a particular variable is given by
the row of zeros. Thus for Smoker, the reference
group is the non-smoker (as setup in Template III).
A smoker compared to a non-smoker is 9.9 (95%
CI 1.4 to 68.4) times more likely to have SBP ≥180.

Table IId. Estimates of the logistic regression model.

Variables in the equation

95.0% C.I. for EXP(B)

B S.E. Wald df Sig. Exp(B) Lower Upper

Step 1a AGE .209 .063 11.007 1 .001 1.233 1.089 1.395

SMOKER(1) 2.292 .986 5.401 1 .020 9.896 1.432 68.380

RACE 1.627 3 .653

RACE(1) .640 1.009 .402 1 .526 1.896 .263 13.696

RACE(2) 1.303 1.136 1.316 1 .251 3.681 .397 34.101

RACE(3) -.097 1.230 .006 1 .937 .908 .081 10.113

Constant -14..462 4.005 13.041 1 .000 .000
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Table IIe. Categorical variables coding.

Categorical variables codings

Parameter coding

Frequency (1) (2) (3)

  RACE Chinese 23 .000 .000 .000

Indian 13 1.000 .000 .000

Malay 10 .000 1.000 .000

Others 9 .000 .000 1.000

  Smoker No 23 .000

Yes 32 1.000

For Race, Chinese is the reference category. In
Table IId, Race(1) refers to comparing the Indian
with Chinese, Race(2) refers to comparing the
Malay with Chinese and lastly, Race(3) for Others
comparing with Chinese. In Template III, observe
that we can only declare either the first or last as the
reference. If we want Malay to be the reference, a recode
to make Malay having the smallest or largest coding
is required.

CHECKING MULTICOLINEARITY
How to check for multicolinearity? To get the
correlations between any two variables, in Template
IV, tick on the Correlations of estimates option to
obtain table III.

Apart from the expected moderate to high
correlations within Race, the correlation values
among age, smoker and race are low. The correlation
between age and the constant is rather high (r = -0.953)
which shows some multicolinearity. What should be
done? Before we answer this question, let us look at
another example which quite commonly happens in
a many-variables study. Table IV shows a 8-variable
model with the correlation matrix between any two
variables given in Table V.

Table IV. An 8-variable logistic model with multicolinearity.

Variables in the Equation

B S.E. Wald df Sig.

  Step 1 V1 -1062.640 56906.272 .000 1 .985

V2 -2033.243 107665.309 .000 1 .985

V3 -2282.536 121116.943 .000 1 .985

V4 -462.334 26296.043 .000 1 .986

V5 1000.935 53615.449 .000 1 .985

V6 65.543 5358.046 .000 1 .990

V7 764.889 40207.609 .000 1 .985

V8 -62.261 4286.793 .000 1 .988

Constant -829.405 44003.539 .000 1 .985

In the correlation matrix for this case, it is not
so easy to spot where the multicolinearity is!
Another drawback with the correlation matrix is
that multicolinearity between one variable with a
combination of variables will not be shown.

A simple but sometimes subjective technique
is to inspect the magnitude of the standard error
(SE) of each variable. The SEs in Table IV are very
large implying multicolinearity exists and the
model is not statistically stable. To “solve” this
issue, start omitting the variable with largest SE,
continue the process until the magnitude of the
SEs hover around 0.001 – 5.0. There is no fixed
criterion on how small the SE should be but a matter
of judgment.

In Table IId, the SEs are within the acceptable
criterion but there was a high correlation between
age and the constant – should one of them be
omitted? The recommendation is to keep the
constant term in the model as it acts as a “garbage
bin”, collecting all unexplained variance in the model
(recall from Table IIc that the variables only explains
50%). How to omit the constant? In template IV,
at the left hand corner, uncheck the “Include constant
in model”.

A PREDICTION MODEL
Frequently our interest is to use the logistic model
to predict the outcome for a new subject. How good
is this model for prediction?

Table III. Correlation matrix for SBP model.

Correlation matrix

Constant SMOKER(1) RACE(1) RACE(2) RACE(3) AGE

Step 1 Constant 1.000 .345 -.326 -.265 -.415 -.953

SMOKER(1) .345 1.000 .073 .081 -.122 -.450

RACE(1) -.326 .073 1.000 .700 .652 .068

RACE(2) -.265 .081 .700 1.000 .585 .030

RACE(3) -.415 -.122 .652 .585 1.000 .215

AGE -.953 -.450 .068 .030 .215 1.000
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Table VI. Model discrimination.

Classification tablea

Predicted

SBP >180 Percentage

Observed no yes correct

  Step 1 SBP >180 no 38 2 95.0
yes 6 9 60.0

Overall percentage 85.5

a  The cut value is .500

The overall accuracy of this model to predict
subjects having SBP ≥180 (with a predicted probability
of 0.5 or greater) is 85.5% (Table VI). The sensitivity is
given by 9/15 = 60% and the specificity is 38/40 = 95%.
Positive predictive value (PPV) = 9/11 = 81.8% and
negative predictive value (NPV) = 38/44 = 86.4%.
How to use this information?

When we have a new subject, we can use the logistic
model to predict his probability of having SBP ≥180.
Let us say we have a black box where we input the age,
smoking status and race of a subject and the output is a
number between 0 to 1 which denotes the probability
of the subject having SBP ≥180 (see Fig. 1).

Fig. 1 The logistic regression prediction model.

Age, race, Probability
smoking status Black box of having SBP

of subject >180

In the black box, we have the equation for calculating
the probability of having SBP ≥180 which is given by

Prob (SBP ≥180) =          where e denotes the exponential function

with z = -14.462 + 0.209 * Age + 2.292 * Smoker(1)
+ 0.640 * Race(1) +1.303 * Race(2) - 0.097 * Race(3)

The numerical values are obtained from the B
estimates in Table IId.

For example, we have a 45-year-old non-smoking
Chinese, then Smoker(1) = Race(1) = Race(2) = Race(3)
= 0, and

z = -14.462 + 0.209 * 45 = -5.057 and e-z = 157.1 which
gives the Prob (SBP ≥ 180) = 1/ (1 + 157.1) = 0.006; very
unlikely that this subject has SBP ≥180 and the NPV
tells me that I am 86.4% confident.

Let us take another example, a 65-year-old Indian
smoker, then Smoker(1) = 1, Race(2) = Race(3) = 0 but
Race(1) = 1. Hence z = -14.462 + 0.209 * 65 + 2.292 * 1 +
0.64 * 1 = 2.055 and e-z = 0.128 which gives the Prob
(SBP ≥180) = 1/(1 + 0.128) = 0.89; very likely that
this subject has SBP ≥ 180 and the PPV gives a
81.8% confidence.

The default cut-off probability is 0.5 (and for this
model, it seems that this cut-off gives quite good
results). We can generate different probability cutoffs,
by changing the ‘Classification cutoff’ in Template IV,
and tabulate the respective sensitivity, specificity,
PPV and NPV, then decide which is the best cut-off
for optimal results.

The area under the ROC curve, which ranges
from 0 to 1, could also be used to assess the model
discrimination. A value of 0.5 means that the model is
useless for discrimination (equivalent to tossing a coin)
and values near 1 means that higher probabilities will
be assigned to cases with the outcome of interest
compared to cases without the outcome. To generate
the ROC, we have to save the predicted probabilities
from the model. In Template I, click on the Save button
to get Template V.

Table V. Correlation matrix of the 8-variable model.

Correlation matrix

Constant V1 V2 V3 V4 V5 V6 V7 V8

  Step 1 Constant 1.000 -.878 -.892 .965 -.920 -.924 -.917 -.523 -.412

V1 -.878 1.000 .659 -.831 .743 .938 .766 .144 .389

V2 -.892 .659 1.000 -.887 .866 .746 .809 .679 .222

V3 .965 -.831 -.887 1.000 -.980 -.917 -.887 -.555 -.374

V4 -.920 .743 .866 -.980 1.000 .877 .832 .598 .342

V5 -.924 .938 .746 -.917 .877 1.000 .799 .280 .378

V6 -.917 .766 .809 -.887 .832 .799 1.000 .620 .150

V7 -.523 .144 .679 -.555 .598 .280 .620 1.000 -.155

V8 -.412 .389 .222 -.374 .342 .378 .150 -.155 1.000

1
1+e-z
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Template V. Saving the predicted probabilities.

Check the Predicted Values – Probabilities. A
new variable, pre_1 (Predicted probability), will be
created when the logistic regression is performed. Next
go to Graphs, ROC curve – see Template VI.

Template VI. ROC curve.

Put Predicted probability (pre_1) into the test
Variable box, sbp180 in the State Variable and Value of
State Variable = 1 (to predict SBP ≥180).

Fig. 2 ROC curve and area.

The ROC area is 0.878 (Fig. 2) which means that
in almost 88% of all possible pairs of subjects in
which one has SBP ≥180 and the other SBP <180,
this model will assign a higher probability to the
subject with SBP ≥180. The optimal sensitivity/
specificity is obtained from the point (*) nearest to
the left upper corner of the box. Thus the optimal
sensitivity = 78% and specificity = 1 - 0.18 = 82%.

Hosmer-Lemeshow goodness of fit (obtained by
checking the relevant box in template IV) tells us how
closely the observed and predicted probabilities
match. The null hypothesis is “the model fits” and a
p value >0.05 is expected (Table VII). Caution has to
be exercised when using this test as it is dependent on
the sample size of the data. For a small sample size,
this test will likely indicate that the model fits and for a
large dataset, even if the model fits, this test may “fail”.

Table VII. Hosmer-Lemeshow test.

Hosmer and Lemeshow Test

Step Chi-square df Sig.

1 5.869 7 .555

The above material covered the situation where
the response outcome has only two levels. There are
times when it is not possible to collapse the outcome
of interest into two groups, for example stage of
cancer. There are also situations where our study
is a matched case-control. If in doubt, do seek help
from a Biostatistician. The next article, Biostatistics
203, will be on Survival Analysis.
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