Biostatistics 203. Survival analysis

Y H Chan

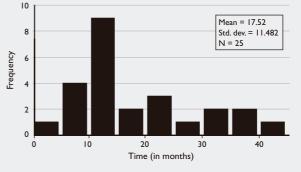
Table I. Summary of the common univariate/multivariate biostatistical techniques to analyse quantitative and qualitative data types.

Quantitative data ⁽¹⁾		Qualitative data ⁽²⁾		
Normality/homogeneity of variance assumptions satisfied?		Independent sample	Matched case-control	
YES Parametric tests	NO Non-parametric tests			
I Sample T Paired T	Sign test Wilcoxon Signed Rank	Chi Square/ Fisher Exact	McNemar test	
2 Sample T	Wilcoxon Rank Sum/ Mann Whitney U			
ANOVA	Kruskal Wallis			
	Multivar	iate tests		
Multiple linear regression ⁽³⁾		Logistic regression ⁽⁴⁾	Conditional logistic regression	

In this article, we shall discuss the use of survival analysis on a quantitative type of data corresponding to the time from a well-defined time origin until the occurrence of some particular event of interest or end-point.

Medical examples are:

- Duration time from randomisation to relapse
- Pressure sore time to development
- Survival time from randomisation until death


Non-medical examples are:

- Banking time from making a loan to fullrepayment
- Economy time from graduation to get 1st job
- Social time from being single to getting married

Since survival time is a quantitative variable, why can't we just use the usual techniques from Table I? Before we explain the main reason why we use survival analysis, let' us consider a simple example on the survival times (in months) for 25 lung cancer patients who all died; the timings are : 1, 5, 6, 6, 9, 10, 10, 10, 12, 12, 12, 12, 12, 12, 13, 15, 16, 20, 24, 24, 27, 32, 34, 36, 36, 44 months.

Performing a simple descriptive, we have n = 25, mean (sd) = 17.52 (11.48) months and median = 12 months.

Fig. I The distribution of the survival times.

It is obvious that the distribution is not normal (Fig. 1) as expected from survival-time data.

Kaplan Meier is the usual technique performed to analyse survival-time data. Table II shows the Kaplan Meier analysis for the above 25 subjects (all died of lung cancer):

Table II. Kapla	an Meier analysis	s (no censoring).
-----------------	-------------------	-------------------

Kaplan Meier technique (All subjects died)				
	Survival time	Standard error	95% CI	
Mean	17.52	2.30	13.02, 22.02	
Median	12.00	1.25	9.55, 14.45	

What do we observe? The Kaplan Meier results of Table II is exactly the same to that of the descriptive results above. So why do we need to do a survival analysis? To quote a Chinese saying, we have used "a bull knife to kill a chicken": an "overkill in analysis"! The reason here is: since all the subjects died (presumably of lung cancer), we have no extra information to require us to perform a survival analysis – **no censored data**.

Y H Chan, PhD Head of Biostatistics

Correspondence to: Dr Y H Chan Tel: (65) 6325 7070 Fax: (65) 6324 2700 Email: chanyh@ cteru.com.sg

What are censored observations? Censored observations arise in cases for which

- the critical event has not yet occurred
- lost to follow-up
- other interventions offered
- event occurred but unrelated cause

Let us consider the situation where we have more information (censored cases) for our 25 lung cancer patients : $1^{#}$, $5^{#}$, 6, 6, $9^{#}$, 10, 10, $10^{#}$, 12, 12, 12, 12, 12, 12[#], 13[#], 15[#], 16[#], 20[#], 24, 24[#], 27[#], 32, 34[#], 36[#], 36[#], 44[#] months (where [#] denotes censored observations).

The subject with 44^{*} definitely is a surviving person at the point of analysis (we cannot "ask" the patient to die – not ethical!). The 1^{*} could be one who just enrolled into the study recently and still surviving. Perhaps, the 5^{*} could be one who (after five months) decided to seek other help and did not return to the study; his survival status is unknown. Lastly, the 13^{*} could be one who died but not because of lung cancer. In all, 10 of the 25 subjects died from lung cancer.

How do we present this data in SPSS? Table III shows the 1st six cases, as an example.

Table III. Survival analysis dataset in SPSS.

Subject number	Survival time	Status
I	I	0
2	5	0
3	6	I
4	6	I
5	9	0
6	10	I
	etc	

The last variable "Status" tells SPSS which case is censored (denoted by 0) and which case is an event (dying of lung-cancer, denoted by 1).

To perform a Kaplan Meier analysis in SPSS, go to Analyze, Survival, Kaplan Meier to get Template I.

(i) id	Time:	05:
	▶ @ time	Paste
	Status:	Beset
	Define Event	Cancel
	Eactor:	Help
	Stata	_
	Label Cases by	_
Compare Factor	Sage Qption	va

Put the variables "time" and "status" at their appropriate options, click on 'Define Event' button to get Template II.

Temp	late	II. De	efining	the	event.

Value(s) Indicating Event Has Occurre • Single value: 11	d Continue
Single value: [1] Range of values:	Cancel
C List of values:	Help
Add	
Change	
Bemove	

Put a 1 as an event as defined accordingly. Click "Continue". In Template I, click on the "Options" folder and checked the boxes as shown in Template III.

Template III. Kaplan Meier options.

Statistics	Continue
Mean and median survival	Cancel
<u>Quartiles</u>	Help
Plots Survival	
<u>O</u> ne minus survival	
□ <u>H</u> azard	
Log survival	

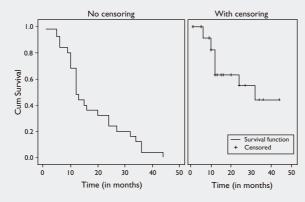
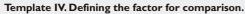
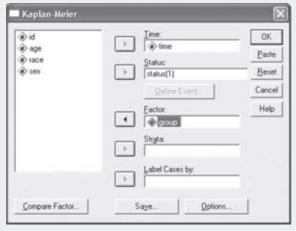

Ticking on the "Mean and median survival" option gives Table IV.

Table IV. Kaplan Meier analysis (with censoring).

Kaplan Meier technique				
	Survival time Standard error 95% C			
Mean	28.51	3.54	21.58, 35.44	
Median	32.00	14.43	3.71, 60.29	


Table IV shows the Kaplan Meier analysis with censored data information taken into account. We observe that the median survival time has increased from 12 months (without censoring) to 32 months. This means that with the factoring in of the "extra" information, we are being "realistic" about the survival time of, in this case, lung cancer or being "fair" to the treatment under study with the intent of extending the survival time of these subjects. Fig. 2 shows the survival plots for both censored and no-censored scenarios.


Fig. 2 Survival plots - lung cancer example.

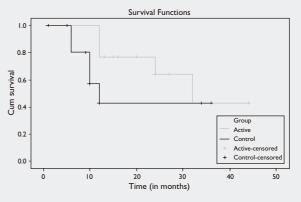
COMPARING TWO SURVIVAL CURVES

Kaplan Meier can be used to compare two treatment groups on their survival times. Put the variable "group" in the "Factor" option, see Template IV.

Click on "Compare Factor" on the left-hand corner of Template IV to invoke the log-rank test to compare the two groups (Template V).

Template V.The log-rank test

Table V shows the mean/median survival times for the control and active groups with log-rank test p = 0.1835 – no differences between the active and control on having a shorter time to event, with the survival plot given in Fig. 3. One common misconception of survival analysis is that some researchers interpret the result as one group being more likely to have deaths (this should be given by logistic regression!). It is the time to event which is the primary response here.


Table V.	Kaplan Meier	analysis for	comparison	between two g	roups.
----------	--------------	--------------	------------	---------------	--------

Survival analys	is for time			
Factor group :	= control			
	Survival time	Standard	error 95	% confidence interval
Mean (Limited to 36	21	5		(12, 30)
Median	12	2		(7, 17)
Factor group :	= active			
	Survival time	Standard	error 95	% confidence interval
Mean (Limited to 44	3 I	4		(23, 39)
Median	32	8		(17, 47)
	Total	Number of events	Number censored	
Group contro	2	5	7	58.33
Group active	13	5	8	61.54
Overall	25	10	15	60.00
Test statistics	for equality of	f survival dist	ributions fo	or group
	Statistic	df		Significance

Fig. 3 Survival plot for comparison of two groups.

1.77

Log rank

Т

1835

The Kaplan Meier technique is the univariate version of survival analysis. To take into account confounders into the analysis, we have to use cox regression.

COX REGRESSION

For the above lung cancer example, we have collected information on race, age and gender, and want to look at a confounder model to determine whether the two groups differ after adjusting for demographics. To perform a cox regression, go to Analyse, Survival, Cox regression to get Template VI.

Template VI. Cox regression: lung cancer example.

 id group age sace ses 	Type: Type: Status: (status(1) Define Event	OK Baste Beset
	Block 1 of 1 Pergetain Coversites:	Help Estegorical.
	Method Enter	Pjots
	Systa:	Options

The declaration for the categorical variables is similar to that discussed in the logistic regression article⁽⁴⁾ by clicking on the "Categorical" folder and put group, race and sex as the categorical covariates (Template VII)

Template VII. Declaration of categorical variables.

Covariates:	Categorical Covariates:	Continue
age	(pop)ndcato) (act(indcato))	Cancel
	(let(indcator)	Help
	Change Contrast Contrast Indicator Change	
	Reference Category @ Last C Ent	

In Template VI, click on "Options" to invoke the 95% CI for the hazard ratio (HR), given by the expression exp(B) – which is also the same expression for odds ratios in logistic regression. This is another common mistake – researchers at times refer to odds ratio in survival analysis (mistaken by the same symbol). The interpretation for the hazard ratio is similar to that of the odds ratio. A value of one means there is no differences between two groups in having a "shorter time to event". A HR >1 means that the group of interest comparing to the reference group (to be observed from the categorical declaration) likely have a shorter time to event. A HR <1 means that the group of interest less likely to have a shorter time to event.

Template VIII. Invoking the 95% CI for the hazard ratio.

Model Statistics	Probability for Stepwise	Continue
Correlation of estimates	Entry 05 Removal 10	Cancel
Display model information	Maximum [terations: 20	Help
 At gach step At last step 	Display baseline function	

From Template VI, ask for plots to get Template IX – click on "Survival" and Separate Lines for "group".

Template IX. Survival plot for Cox regression.

Cox Regression: Plots	×
Plot Type	Continue
<u>One minus survival</u>	Cancel
Covariate Values Plotted at:	Help
age(Mean) race(Cat)(Mean) sex(Cat)(Mean)	Lines for: at)
Change Value C Mean C Value Change	

The following Tables VIa – e show the results for the Cox regression.

Table VIa. Categorical definition.

Categorical variable codings						
		Frequency	(1)	(2)	(3)	
Group	1.00=control	12	T			
	2.00=active	13	0			
Race	I=chinese	15	I	0	0	
	2=indian	5	0	I.	0	
	3=malay	2	0	0	1	
	4=other	3	0	0	0	
Sex	l=male	17	I			
	2=female	8	0			

The reference category for group is active, race is "other race" and sex is female.

Table VIb gives the p-values (Sig) and the hazard ratios (Exp(B)) of the variables. Firstly, we have to check for multicolinearity by observing whether the SE of all the variables are small (see logistic regression⁽⁴⁾ for a detailed discussion on this checking).

	Variables in the equation								
			95.0% CI	for Exp(B)					
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper	
Group	1.841	.911	4.086	I	.043	6.302	1.058	37.550	
Sex	3.670	1.435	6.542	I.	.011	39.263	2.358	653.769	
Age	.115	.043	7.137	I.	.008	1.122	1.031	1.220	
Race			2.066	3	.559				
Race(I)	307	1.181	.068	I.	.795	.735	.073	7.448	
Race(2)	.983	1.299	.573	I.	.449	2.672	.210	34.060	
Race(3)	.907	1.469	.381	I	.537	2.476	.139	44.085	

Table VIb. Estimates of variables in Cox regression.

Since this is an adjusting for confounder model, our interest is only in the variable group. 'Thankfully' the p-value is 0.043 (statistically significant!) compared to the Kaplan Meier analysis (well, we do not always get this happy ending). The HR is 6.302 (95% CI 1.058 - 37.55), comparing the control with the active (obtained from the categorical definition table IVa), the control likely to have a shorter time to event and in this example, the event is death.

What is going on here? Why now a statistical difference? Table VIb also showed that there are statistical differences for gender and also age – the men and older people were doing worst. Performing a cross-tabulation shows that there are more men and less women in the control group (p = 0.673) and mean age is higher in the active group. See Tables VIc and VId.

Table VIc. Cross-tabulation between group and gender.

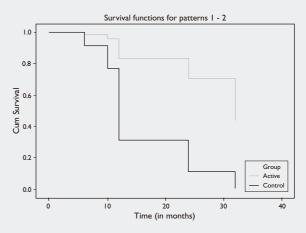

The sex of the patient * group cross-tabulation					
			Gr	oup	
			Control	Active	Total
Sex of patient	Male	Count % within group	9 75.0%	8 61.5%	17 68.0%
	Female	Count % within group	3 25.0%	5 38.5%	8 32.0%
Total		Count % within group	12 100.0%	13 100.0%	25 100.0%

Table VId. Age differences between group (p=0.737).

Group statistics					
Group N Mean Std. deviation Std. error m					
Age	active	13	31.6923	16.16263	4.48271
	control	12	29.5833	14.73683	4.25416

Thus taking into account these information, a treatment difference is found, as observed from the survival plot in Fig. 4.

Fig. 4 Survival plot for the lung cancer example.

The above exercise showed that it is not relevant to stop at the univariate analysis but to always perform a multivariate analysis to present the realistic situation!

Since we found a difference between treatment groups, do you want to stop here? How about interaction between gender and group, or age and group? Question of interest would be: is there a particular group (female on active, for example) performing better? Note that we will start to ask these questions only when the "main effects" model showed significant differences in the variables of interest.

How to put in the interaction term? In Template VI, highlight group 1^{st} , hold the ctrl key and highlight age – observe the button >a*b> becomes "visible" – click on this button – see Template X.

Variables in the equation									
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper	
Group	-5.524	4.891	1.276	I	.259	.004	.000	58.121	
Sex	1.687	1.716	.966	I	.326	5.401	.187	156.115	
Age	.082	.055	2.186	I	.139	1.085	.974	1.200	
Race			3.171	3	.366				
Race(1)	869	1.341	.420	I	.517	.419	.303	5.804	
Race(2)	1.112	1.261	.777	I	.378	3.041	.257	36.039	
Race(3)	1.018	1.570	.421	I	.517	2.769	.128	60.107	
Age*group	.121	.089	1.823	I	.177	1.128	.947	1.344	
Group*sex	5.584	3.261	2.933	I	.087	266.224	.447	158709.101	

Table VIe. Result with interaction terms.

Template X. Preparing to put an interaction term group*age.

Cox Regressio	n	
 id genen 525 genen genen genen genen genen genen genen 	Type: Ty	OK. Paste Beset Cancel Help
	Covgalate: prop(Cat) rev(Cat) 2a*bo race(Cat)	<u>E</u> stegorical.
	Method Enter	Plota
	Spata:	Savg

Click on >a*b> button to activate age*group(Cat) - see Template XI. Likewise do the same for gender*group.

Options.

Template X	I.Activating an	interaction term.
------------	-----------------	-------------------

1.5

Table VIe shows that none of the interaction terms are significant. This implies that regardless of age or gender, the active group is performing better (from Table VIb).

Let us discuss another example on the use of interaction term – using the breast cancer survival dataset from SPSS. Variables collected were age and the categorical histology grade, oestrogen receptor status, progesterone receptor status, pathological tumour size and lymph node status. The interest is to determine the predictors for a shorter survival time to death.

Table VIIa. Categorical definition – breast cancer example.

Categorical	variable	codings

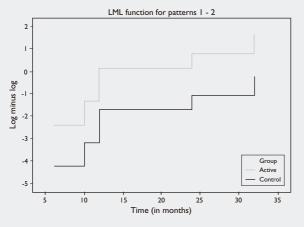
Categorical variable coulligs					
		Frequency	(I)	(2)	
histgrad	=	56	0	0	
	2=2	352	I.	0	
	3=3	252	0	I.	
cr	0=negative	262	0		
	I=positive	398	T		
pr	0=negative	299	0		
	I=positive	361	T		
pathscat	I=<=2cm	457	0	0	
	2=2-5cm	196	1	0	
	3=>5cm	7	0	1	
ln_yesno	0=no	485	0		
	l=yes	175	1		

Reference group for histology grade is grade 1, for er, pr and lymph node is negative and tumour size is ≤2cm.

Variables in the equation											
							95.0% CI for Exp(B)				
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper			
Age	021	.014	2.200	I	.138	.980	.953	1.007			
histgrad			.872	2	.647						
histgrad(1)	.778	1.036	.564	I.	.453	2.177	.286	16.587			
histgrad(2)	.942	1.056	.796	I.	.972	2.564	.324	20.300			
cr	022	.432	.003	I.	.959	.978	.419	2.281			
pr	455	.422	1.159	I.	.282	.635	.277	1.452			
pathscat			6.005	2	.050						
pathscat(1)	.638	.336	3.614	I.	.057	1.893	.980	3.657			
pathscat(2)	1.484	.776	3.658	I	.056	4.412	.964	20.200			
In_yesno	.724	.337	4.605	I	.032	2.063	1.065	3.997			

Table VIIb. Main effects model – breast cancer example.

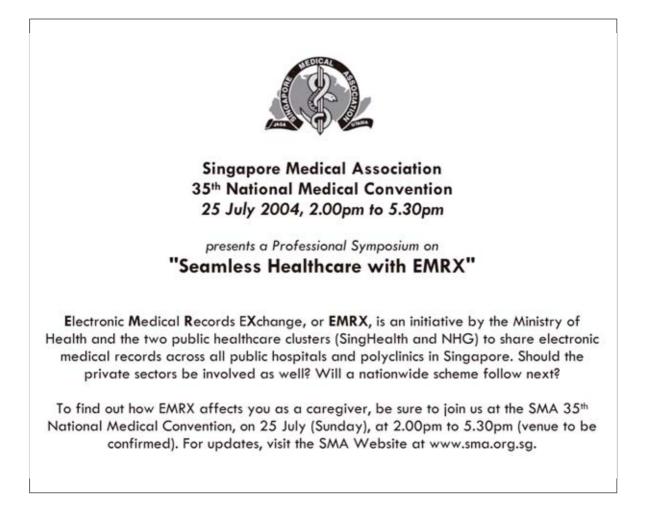
Table VIIc. Interaction terms - breast cancer example.


Variables in the equation											
							95.0% CI for Exp(B)				
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper			
Age	023	.014	2.845	I	.092	.977	.951	1.004			
histgrad			1.165	2	.559						
histgrad(1)	1.047	1.067	.962	I.	.327	2.848	.352	23.068			
histgrad(2)	1.161	1.081	1.153	I.	.283	3.192	.384	26.563			
cr	063	.424	.022	I.	.881	.939	.409	2.156			
pr	516	.413	1.556	I.	.212	.597	.266	1.342			
pathscat			8.520	2	.014						
pathscat(1)	179	.501	.128	I.	.721	.836	.313	2.233			
pathscat(2)	3.100	1.102	7.904	I.	.005	22.189	2.557	192.566			
In_yesno	.006	.505	.000	I.	.990	1.006	.374	2.706			
In_yesno*pathscat			8.564	2	.014						
In_yesno*pathscat(1)	1.670	.707	5.574	I.	.018	5.312	1.328	21.248			
ln_yesno*pathscat(2)	-1.847	1.547	1.425	I.	.233	.158	.008	3.274			

Those with a positive lymph node more likely to have a shorter time to death (HR = 2.06, 95% CI 1.07 - 4.0, p = 0.032). Tumour size is "just off statistical significance". Should we conclude that only women with a positive lymph node are at a higher risk? *Chotto matte* (*wait a minute*) – what happens if we include a lymph node * tumor size interaction (see Table VIIc).

Here we can see that lymph node status is no more statistically significant but tumour size and their interaction are! The results are telling us that regardless of the lymph node status, subjects with tumour size >5cm are at risk (HR=22.19, 95% CI 2.56 - 192.57, p=0.005) and for subjects with tumour size 2 - 5cm, they are at a higher risk if they have a positive lymph node (HR=5.31, 95% CI 1.33 - 21.25, p=0.018).

One last assumption to check: **proportional hazard model**. From the lung cancer example, in Template IX, click on the "log-minus-log" plot option to get Fig. 5, we do not want the lines to cross each other. When the proportional hazard assumption is not satisfied, we will have to use Cox regression with time-dependent covariate to analyse the data.


Fig. 5 Log-minus-log plot for proportional hazard checking.

Our next article will be "Biostatistics 301. Repeated measurement analysis".

REFERENCES

- Chan YH. Biostatistics 102. Quantitative data parametric and non-parametric tests. Singapore Med J 2003; 44:391-6.
- Chan YH. Biostatistics 103: Qualitative data tests of independence. Singapore Med J 2003; 44:498-503.
- Chan YH. Biostatistics 201. Linear regression analysis. Singapore Med J 2004; 45:55-61.
- Chan YH. Biostatistics 202. Logistic regression analysis. Singapore Med J 2004; 45:149-53.

