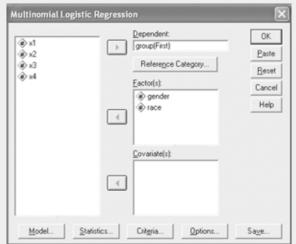


Biostatistics 305. Multinomial logistic regression


Y H Chan

Multinomial logistic regression is the extension for the (binary) logistic regression⁽¹⁾ when the categorical dependent outcome has more than two levels. For example, instead of predicting only dead or alive, we may have three groups, namely: dead, lost to follow-up, and alive. In the analysis to follow, a reference group has to be chosen for comparison, the appropriate group would be the alive, i.e. dead compared to alive and lost to follow-up compared to alive. The predictors used are two categorical (gender and race) and four quantitative variables (x1 - x4).

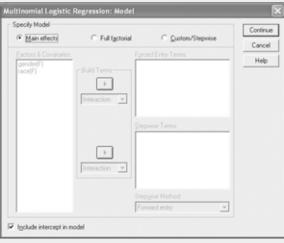
In SPSS, go to Analyse, Regression, Multinomial Logistic to get Template I.

Template I. Multinomial logistic regression.

Faculty of Medicine National University of Singapore Block MD11 Clinical Research Centre #02-02 10 Medical Drive Singapore 117597

Y H Chan, PhD Head Biostatistics Unit

Correspondence to: Dr Y H Chan Tel: (65) 6874 3698 Fax: (65) 6778 5743 Email: medcyh@ nus.edu.sg For the initial analysis, let us just use the two categorical independent variables (gender and race), put them in the Factor(s) option. Put the dependent variable Group (1 = alive, 2 = lost to follow-up, 3 = dead) into the Dependent box. The default Reference-Category is Last. Click on the Reference Category button to get Template II.


Template II. Reference category definition.

Reference Category	
 Eirst category 	Continue
C Last category	Cancel
C Custom	Help
⊻alue:	
Category Order	
Ascending	
C Descending	

Change the Reference Category to "First category". Leave the Category Order to "Ascending", this means that the smallest value is the first category. The "Descending" option means that the highest category is the first category (a very misleading and redundant option – need to be cautious!).

Click the Model folder in Template I to define the variables to be included in the model, see Template III. The Main effects option will include all the variables specified with no interaction terms whereas the Full factorial option will provide the main effects with all possible interactions. For the Custom/Stepwise option, we have a choice to set up the relevant main effects and interaction terms using the Forced Entry option or to perform a Stepwise analysis. Let us use the Main effects option.

Template III. Model specifying.

Click on the Statistics folder in Template I.

Cage processing summary		Continu
Model Pseudo R-square	Cell probabilities	Cancel
Step summary	Classification table	Help
Model fitting information	Goodness-of-fit	
Parameters		
Estimates	Cogfidence Interval (%): 95	
🔽 Likelihood ratio tests		
Asymptotic correlations		
Asymptotic govariances		
Define Subpopulations		
Covariate patterns defined	by factors and covariates	
C Covariate patterns defined	by ⊻ariable list below	
gender(F) race(F)		
	•	

Template IV. Multinomial statistics folder.

Case processing summary

Table Ia. Case processing summary: Gender + Race.

		Ν	Marginal percentage
Group	Alive	99	32.0%
	Lost to follow-up	108	35.0%
	Dead	102	33.0%
Gender	Male	151	48.9%
	Female	158	51.1%
Race	Chinese	155	50.2%
	Malay	90	29.1%
	Indian	64	20.7%
Valid		309	100.0%
Missing		0	
Total		309	
Subpopulation		6	

Table Ib. Model fitting information: Gender + Race.

In Template IV, besides the default checked items,	
tick on Classification table and Goodness-of-fit options.	M
The available saved options (see Template V) could be	
obtained from the Saved folder in Template I.	Int

Model fitting information						
Model -2 log likelihood Chi-square df						
Intercept only	63.979					
Final	50.506	13.473	6	.036		

Template V. Saved options.

Saved variables		Continue
Estimated response probabilities		
Predicted category		Cancel
		Help
Predicted category probability		
Ctual category probability		
Export model information to XML file		
	Browse	

The heading of the output is "Nominal regression", this assumes that there is no "ranking ordering" in the categorical outcome. Observe that we have six subpopulations (given by 2 [gender] X 3 [race]), see Table Ia. If there are no zero frequencies in each of the subpopulation, no warning-message will be displayed.

Table Ib shows whether this Gender + Race model gives adequate predictions compared to the Intercept Only (Null model). The Null model uses the modal class (lost to follow-up), see Table Ia, as the model's prediction accuracy - 35%. We want the p-value (sig) of Final to be <0.05. Table Ic shows that this Gender + Race model compared to the Null model gives better accuracies for the "alive" and "lost to follow-up" groups but not for the "dead" group. Though the Model fitting information shows that the current model is outperforming the null, we see that it is not a "good" model if our interest is to predict the "dead" group.

Table Ic. Predictions of the Gender + Race model.

Classification						
	Predicted					
Observed	Alive	Lost to follow-up	Dead	Percent correct		
Alive	49	37	13	49.5%		
Lost to follow-up	33	54	21	50.0%		
Dead	33	51	18	17.6%		
Overall percentage	37.2%	46.0%	16.8%	39.2%		

Table Id. Goodness-of-fit: Gender + Race.					
Goodness-of-fit					
	Chi-square	df	Sig.		
Pearson	2.230	4	.694		
Deviance	2.216	4	.696		

Table Ie indicates the proportion of variation being explained by the model. Only about 5% (maximum 100%) is being explained by the Gender + Race model!

Table If. Likelihood Ratio test: Gender + Race.

Table Id shows whether the model adequately
fits the data. We want the p-values (sig) >0.05. If
no warning message is given or the number of
subpopulations (cells) with zero frequencies is
small, with p>0.05, we could conclude that this
model adequately fits the data.

Table Ie. Pseudo R-square: Gender + Race.

Table Ig. Parameter estimates: Gender + Race.

	Pseudo R-square
Cox and Snell	.043
Nagelkerke	.048
McFadden	.020

Likelihood ratio tests							
-2 log likelihood Effect of reduced model Chi-square df S							
Intercept	50.506ª	.000	0				
Gender	60.405	9.899	2	.007			
Race	54.405	3.899	4	.420			

The chi-square statistics is the difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0.

^{a.} This reduced model is equivalent to the final model because omitting the effect does not increase the degrees of freedom.

The Likelihood ratio test (Table If) shows the contribution of each variable to the model – Gender had a significant (p<0.05) contribution but not Race.

			Parame	eter estima	ates				
									nfidence or Exp(B)
Groupª		В	Std. error	Wald	df	Sig.	Exp(B)	Lower bound	Upper bound
Lost to follow-up	Intercept	.912	.371	6.052	I	.014			
	[gender=1]	759	.286	7.012	L	.008	.468	.267	.821
	[gender=2]	0ь			0				
	[race=1.00]	624	.379	2.716	I.	.099	.536	.255	1.126
	[race=2.00]	352	.422	.695	L	.404	.703	.308	1.608
	[race=3.00]	0 ^ь			0				
Dead	Intercept	.854	.376	5.162	L	.023			
	[gender=1]	808	.291	7.718	L	.005	.446	.252	.788
	[gender=2]	0ь			0				
	[race=1.00]	627	.386	2.637	L	.104	.534	.251	1.139
	[race=2.00]	276	.427	.418	L	.518	.759	.329	1.751
	[race=3.00]	0 ^b			0				

^{a.} The reference category is: alive.

^{b.} This parameter is set to zero because it is redundant.

How do we interpret Table Ig? The nominal order of Gender and Race are given in Table Ia. For Gender, Male = 1 and Female = 2, the comparison will be male compared to female. The first half of Table Ig has the outcome of "lost to follow-up" compared to "alive" – males compared to females were less likely to be "lost to follow-up", Odds Ratio (OR) = 0.468 (95% CI 0.267 to 0.821), p=0.008. Conversely, we can say that females were more prone to be "lost to follow-up", OR = 2.14 (given by the reciprocal of 0.468). Similarly, females were also more likely to be "dead" – OR = 2.24 (95% CI 1.27 to 3.97), p=0.005.

For Race, the reference group is Indian (from Table Ia, Indian = 3); Race = 1 compares Chinese with Indians, and Race = 2 compares Malays with Indians.

This Gender + Race model is not very adequate – poor prediction for the "dead" group and very low Pseudo R-square, though with adequate goodness-of-fit. In our next model, we shall include the 4 quantitative variables (put x1 - x4 into the Covariate option in Template I).

SPSS multinomial outputs (Gender + Race + x1 to x4 Model)

The first table we get is a warning message (Table IIa).

Table	lla.	Warning	message.

Warning					
There are 618 (66.7%) cells (i.e., dependent variable levels by					
subpopulations) with zero frequencies.					

The reason this warning comes up is that the model includes the continuous covariates (x1 - x4) which results in many subpopulations, 618 + 309 = 927 of them of which 618 are empty and 309 with data (see Table IIb).

Table IIb. Case processing summary: Gender + Race + x1 to x4.

Case processing summary				
		Ν	Marginal percentage	
Group	Alive	99	32.0%	
	Lost to follow-up	108	35.0%	
	Dead	102	33.0%	
Gender	Male	151	48.9%	
	Female	158	51.1%	
Race	Chinese	155	50.2%	
	Malay	90	29.1%	
	Indian	64	20.7%	
Valid		309	100.0%	
Missing		0		
Total		309		
Subpopulation		309 ª		

^a The dependent variable has only one value observed in 309 (100.0%) subpopulations. Table IIc. Model fitting information: Gender + Race + x I to x4.

Model fitting information				
Model	-2 log likelihood	Chi-square	df	Sig.
Intercept only	678.536			
Final	170.343	508.193	14	.000

This model with the addition of x1 - x4 also outperforms the null model (Table IIc) with much improved accuracies for all three groups (Table IId)

Table IId. Prediction accuracies: Gender + Race + x1 to x4.

Classification				
		Pred	icted	
Observed	Alive	Lost to follow-up	Dead	Percent correct
Alive	84	13	2	84.8%
Lost to follow-up	5	103	0	95.4%
Dead	3	0	99	97.1%
Overall percentage	29.8%	37.5%	32.7%	92.6%

Table IIe. Goodness-of-fit: Gender + Race + x1 to x4.

Goodness-of-fit				
	Chi-square	df	Sig.	
Pearson	186196.512	602	.000	
Deviance	170.343	602	1.000	

Because of the many cells with zero frequencies, this goodness-of-fit test is not relevant now (Table IIe) – ignore this table.

Table IIf. Pseudo R-square: Gender + Race + x1 to x4.

Pseudo R-square				
Cox and Snell	.807			
Nagelkerke	.908			
McFadden	.749			

The pseudo R-square has also increased tremendously, explaining about 75% of the variance (Table IIf).

Likelihood ratio tests				
Effect	-2 log likelihood of reduced model	Chi-square	df	Sig.
Intercept	170.343ª	.000	0	
xI	357.036	186.693	2	.000
x2	446.851	276.508	2	.000
x3	173.332	2.989	2	.224
x4	175.218	4.875	2	.087
Gender	174.002	3.659	2	.160
Race	172.272	1.929	4	.749

Table IIg. Likelihood ratio tests: Gender + Race + x1 to x4.

The chi-square statistics is the difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0.

^{a.} This reduced model is equivalent to the final model because omitting the effect does not increase the degrees of freedom.

Significant contributors to the model are x1 and x2 (Table IIg).

For quantitative variables, parameters with significant positive (negative) coefficients increase (decrease) the likelihood of that response category with respect to the reference category. Subjects with increased x1 and decreased x2 were more likely to default whereas those with decreased x1 and increased x2 were more likely to be "dead".

ORDINAL REGRESSION

When the categorical outcomes have an ordinal nature (for example: alive, half-dead, dead – if we consider half-dead is "better" than being dead), the Ordinal regression procedure (also referred to as PLUM) could be used. Here the interest is to determine the direction of the relationship between each predictor and the ordinal nature of the categorical outcome.

Table IIh. Parameter estimates: Gender + Race + x1 to x4.

	Parameter estimates								
								95% co interval f	nfidence or Exp(B
Groupª		В	Std. error	Wald	df	Sig.	Exp(B)	Lower bound	Upper bound
Lost to follow-up	Intercept	-3.097	6.512	.226	L	.634			
	хI	1.364	.213	41.164	T	.000	3.912	2.579	5.935
	x2	-1.423	.225	39.924	I.	.000	.241	.155	.375
	×3	051	.053	.898	I.	.343	.951	.856	1.056
	x4	.111	.088	1.605	I.	.205	1.118	.941	1.328
	[gender=1]	697	.486	2.055	L	.152	.498	.192	1.292
	[gender=2]	0ь		•	0				
	[race=1.00]	667	.636	1.100	L	.294	.513	.148	1.785
	[race=2.00]	750	.706	1.130	I.	.288	.472	.118	1.883
	[race=3.00]	0 ^b	•	•	0	•	•	•	
Dead	Intercept	-14.419	9.189	2.463	T	.117			
	хI	-1.240	.281	19.434	I.	.000	.289	.167	.502
	x2	1.448	.278	27.046	I.	.000	4.255	2.466	7.345
	x3	.177	.126	1.980	I.	.159	1.194	.933	1.528
	x4	321	.193	2.767	I.	.096	.725	.497	1.059
	[gender=1]	997	.806	1.530	I.	.216	.369	.076	1.791
	[gender=2]	0ь		•	0				
	[race=1.00]	351	1.022	.118	I.	.732	.704	.095	5.222
	[race=2.00]	.287	1.128	.065	I.	.799	1.333	.146	12.149
	[race=3.00]	0 ^b			0				

^{a.} The reference category is: alive.

^{b.} This parameter is set to zero because it is redundant.

In SPSS, go to Analyze, Regression, Ordinal to get Template VI.

Template VI. Ordinal regression.

Ordinal Regression		×
	Dependent:	OK. Paste
	Eactor(s)	Reset Cancel Help
	Covariate(s)	
	Options Output Locatio	n <u>S</u> cale

The setting up of the variables is similar to that of Multinomial except that we do not need to define the reference category as the outcome is ordinal. Click on the Output folder in Template VI to get Template VII.

Template VII. Ordinal regression: output.

Ordinal Regression: Output	X
Display Print Jeration history for every! Goodness of [it statistics Summary statistics Easameter estimates Asymptotic gomelation of parameter estimates Asymptotic cogariance of parameter estimates Cell information Test of parallel jnes	Saved variables
	Continue Cancel Help

Besides the default checks, tick on Test of parallel lines, the options of saving the predicted results are available here too. Tick on the Predicted category (this will produce a new variable Pre_1 – Ordinal regression does not have the Classification table option, we have to cross-tabulate Pre_1 with Group to determine the model's accuracies).

Click on the Location folder in Template VI to define the model. In Template VIII, click on Cancel if we want the Main effects model only, otherwise set-up the Custom model.

Template VIII. Ordinal regression: location.

Specily model			Continue Cancel
C Queton Eactors/covariates:	_	Location model	Help
pender(F) ticce(F) 제2(C) 제2(C) 제4(C)	Build term(s)		

Click on the Options folder in Template VI, to get Template IX.

Template IX. Choosing the Link function.

Ordinal Regression: Optio	ns 🛛 🗙
Iterations <u>M</u> aximum iterations:	Tontinue Continue Cancel
Magimum step-halving:	5 Help
Log-likelihood convergence:	0 💌
Parameter convergence:	0.000001
Confidence intervat 95	x
Singularity tolerance: 0.0	000000
Lin <u>k;</u>	2 v

The link function is a transformation of the cumulative probabilities of the ordinal outcome to be used in the estimation of the model. Five link functions are available, see Table III. To check the distribution of the ordinal outcome, a bar chart would be most appropriate (Fig. 1). The three groups are quite evenly distributed, thus the Logit link function would be used.

Table III. Link functions.

Typical application
Evenly distributed categories
Higher categories more probable
Lower categories more probable
Latent variable is normally distributed
Latent variable has many extreme values

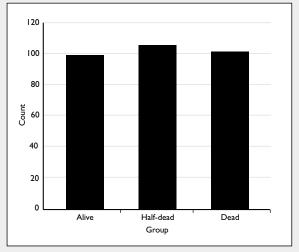

			Param	eter estimat	es			
							95% confidence interval	
		Estimate	Std. error	Wald	df	Sig.	Lower bound	Upper bound
Threshold	[group = 1]	4.699	2.911	2.605	I	.107	-1.007	10.404
	[group = 2]	6.756	2.924	5.338	I	.021	1.025	12.487
Location	хI	196	.046	18.267	I	.000	286	106
	x2	.296	.041	51.397	I	.000	.215	.377
	x3	005	.027	.039	I	.844	058	.047
	x4	010	.043	.049	I	.825	094	.075
	[gender=1]	715	.234	9.377	I	.002	-1.173	257
	[gender=2]	0 ª			0			
	[race=1.00]	541	.303	3.192	I	.074	-1.134	.052
	[race=2.00]	218	.336	.423	I	.515	876	.439
	[race=3.00]	0 ª			0			

Table IVa. Parameter estimates: Ordinal regression.

Link function: Logit.

^{a.} This parameter is set to zero because it is redundant.

The SPSS outputs for Ordinal regression are similar to those of Multinomial. We will only discuss on the interpretation of the parameter estimates (Table IVa) and the parallel line testing (Table IVb).

The Threshold portion shows the constants/ intercepts of the model. Significant predictors (for Location) are x1, x2 and gender. A positive relationship exists between x2 and the ordinal outcome. This means that as x2 increases, so does the probability of being in one of the higher categories. On the other hand, x1 has a negative relationship. For Gender, males compared to females had a lower probability to be in a higher category. For Logit link, taking the exponential of the estimates gives us the Odds ratios. For example, a unit increase in x2 will result in an OR of exp (0.296) = 1.34 increase in odds of being in a higher category of the ordinal outcome. For the other link functions, there is no direct interpretation of the estimates due to the complicated nature of the link.

Table IVb.Test of Parallel lines.

Test of Parallel lines ^c							
-2 log likelihood	Chi-square	df	Sig.				
544.429							
231.326ª	313.103b	7	.000				
	-2 log likelihood 544.429	-2 log likelihood Chi-square 544.429	-2 log likelihood Chi-square df 544.429				

The null hypothesis states that the location parameters (slope coefficients) are the same across response categories.

^{a.} The log-likelihood value cannot be further increased after maximum number of step-halving.

^{b.} The chi-square statistic is computed based on the log-likelihood value of the last iteration of the general model. Validity of the test is uncertain.

^{c.} Link function: logit.

The test of Parallel lines assesses whether the assumption of all categories having the same parameters is reasonable or not, i.e. whether one set of coefficients for all the categories is appropriate. We want the p-value (sig) for the General in Table IVb to be >0.05. Here p<0.001 means that separate parameters for each category would be more appropriate and thus this current model may not be suitable. This unsuitability could be due to the use of wrong link function or wrong ordering of the categories (perhaps it is better to be dead rather than half-dead!). We could remodel by using a different link function, the next appropriate one is the Cauchit since the other three link functions would not be "correct" (because of the evenly distributed categories and some of the variables would not satisfy the normal assumptions). If the Cauchit link function is still not appropriate, try re-ordering using alive, dead, half-dead. If all else fails then we have to resort to multinomial regression - ignoring that there is an ordinal nature in the categories.

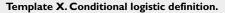
A word of caution, the p-value of this parallel line test is sensitive to the sample size and the number of independent variables included into a model. Most of the time it has p<0.05, we could assess a model via its Pseudo R-square and Classification table of accuracies.

In Template VI, there is the Scale folder which allows us to add in the scale component. This is an optional modification to the basic model to account for differences in variability for different values of the predictor variables. For example, if men have more variability than women in their outcome values, using a scale component to account for this may improve the model. Interested readers could refer to any standard text on Ordinal regression for further information. Singapore Med J 2005; 46(6) : 266

CONDITIONAL LOGISTIC REGRESSION FOR MATCHED CASE-CONTROL STUDY

The multivariate extension for McNemar Test for matched case-control study is the Conditional logistic regression. The Multinomial logistic regression can be used to analyse the 1-1 matching (say, by age and gender) in which one case has only one matching control.

Table Va shows the 1st five cases of a matched case-control study. The outcome is death, each death case is matched with an alive person by age and gender. Table Vb shows the variables needed to be computed before we can perform a 1 to 1 conditional logistic which is based on the difference between the case and control. A column of Outcome = 1 is required and the differences for x1 to x3between dead and alive needs to be computed. For diabetes (1 = yes, 0 = no), to compute diabetes_diff, simply use diabetes_dead - diabetes_alive. For race (1 = Chinese, 2 = Malay and 3 = Indian), a reference category is required, let us say Chinese. Then we need to create dummy variables for the Malays and Indians for both dead and alive groups. For instance, Malay_dead = 1 if the race of the dead person is a Malay otherwise 0; likewise create for the rest: Malay_alive, Indian_dead and Indian_alive. Lastly, compute the Malay_diff using Malay_dead - Malay_alive (similarly for Indian_diff).


	Dead				Alive				
хI	x2	x3	diabetes	race	×I	×2	x3	diabetes	race
84.00	82.10	45.00	I	I	84.0	73.2	47.0	0	I
83.10	86.40	52.00	I	3	86.1	81.1	51.0	I	I
84.60	87.00	53.00	I	2	87.3	76.8	48.0	0	3
84.00	78.80	50.50	0	2	84.2	71.4	48.5	I	I
83.50	88.20	46.00	I	2	83.2	73.7	47.0	I	I

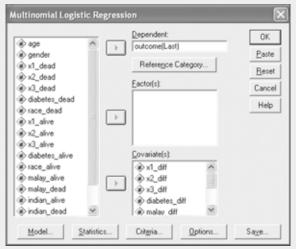

Table Va. First five cases of a Matched case-control study: outcomes.

Table Vb. First five cases of a Matched case-control study: variables.

Outcome	x I_diff	x2_diff	x3_diff	Diabetes diff	Malay dead	Indian dead	Malay alive	Indian alive	Malay diff	Indian diff
I	0.00	8.90	-2.00	1.00	0.00	0.00	0.00	0.00	0.00	0
I	-3.00	5.30	1.00	0.00	0.00	1.00	0.00	0.00	0.00	I
I	-2.70	10.20	5.00	1.00	1.00	0.00	0.00	1.00	1.00	-1
I	-0.20	7.40	2.00	-1.00	1.00	0.00	0.00	0.00	1.00	0
I	0.30	14.50	-1.00	0.00	1.00	0.00	0.00	0.00	1.00	0

To perform the analysis in SPSS, go to Analyse, Regression, Multinomial logistic – put the Outcome variable into the Dependent option and all the difference variables computed earlier into the Covariates option (see Template X). Note that the matched variables, age and gender, are not included in the definition of the analysis but could be used for interaction terms in the modelling. The same difference procedure must be followed for the interaction terms - the interaction variables must be created first and then differenced.

Table Vd. Parameter estimates: conditional logistic.

Click on the Model folder, Template III is obtained – ** IMPORTANT ** – have to uncheck the "Include Intercept in model" option. Let us use the main effects model.

The goodness-of-fit statistics and the classification table are not valid for matched case-control studies (do not need them), the Model fitting information, the likelihood ratio and R-square statistics are valid and interpreted as usual. Table Vc shows the message that a conditional logistic regression is being performed and Table Vd shows the parameter estimates.

Conditional	logistic	rogroccion	maccada

Warning
The dependent variable has only one valid value. A conditional
logistic regression model will be fitted.

The significance value of the test for the difference in x2, x3 and diabetes are less than 0.05 – subjects with higher values of x2, lower values of x3 and diabetic are at a higher risk to mortality. The Exp (B) shows the change in the odds of mortality for a one-unit change in the predictor.

For n:m matching case-control study, we will have to use Cox regression⁽²⁾ to do the analysis. Let us discuss using the above 1:1 matching first. Table VIa shows the data structure for the first three matched subjects (by age and gender).

Parameter estimates									
								95% coi interval f	
Outcome		В	Std. error	Wald	df	Sig.	Exp(B)	Lower bound	Upper bound
Dead	×I_diff	.021	.078	.071	I	.789	1.021	.877	1.188
	x2_diff	.400	.086	21.496	I	.000	1.492	1.260	1.767
	x3_diff	499	.143	12.088	I	.001	.607	.458	0.804
	diabetes_diff	1.065	.521	4.188	I	.041	2.902	1.046	8.049
	Malay_diff	178	.629	.080	I	.777	.837	.244	2.871
	Indian_diff	112	.647	.030	I	.862	.894	.252	3.173

Table VIa. Conditional logistic regression (1:1 matching) using Cox regression option.

Matching number	×I	x2	x3	Dead	Diabetes	Race	Time
I	84.0	82.1	45.0	I	I	I	I
1	84.0	73.2	47.0	0	0	I	2
2	83.1	86.4	52.0	I	I	3	Ι
2	86.1	81.1	51.0	0	I	I	2
3	84.6	87.0	53.0	I	l	2	I
3	87.3	76.8	48.0	0	0	3	2

We need a matching number to "link" the case and control. The Dead variable is the outcome status of the subject (dead = 1 and alive = 0). Need a variable Time as the response variable where the dead has a Time = 1 and the alive (censored) has Time = 2. To perform the analysis, in SPSS, go to Analyse, Survival, Cox Regression to get Template XI.

Template XI. Conditional logistic using Cox regression.

Cox Regression		\sim
proter gender w srl w race	Time: > Status: > Ided11 Define Event. Block 1 of 1 Preysous Next Covgrister: Ided4 >>10 rd_ded4 >>0 rd_ded4 >>0 rd_ded4	OK Paste Beset Cancel Help
	Method Enter	Pjots Savg Optiona

Put Time in the Time option, dead in the Status option (define Event = 1). Put the variables of interest into the Covariates option and lastly include the Match number (Match_num) in the Strata option. This will produce exactly the same results in Table Vd. Table VIb shows the data structure for a n:m matching. The n and m do not need to be "fixed" in the same study, i.e. we can have 1:3, 2:3, etc. Age is the matching variable which will be used in the Strata option (see Template XI).

Table VIb. Conditional logistic regression (n:m matching	g)
using Cox regression option.	

	Outcome		
Matching	Case =1	Relevant Variables	
by age	Control = 0		Time
16	Case		Ι
16	Control		2
16	Control		2
16	Control		2
17	Case		-
17	Case		Ι
17	Control		2
17	Control		2
17	Control		2

For our next article, we shall discuss the analysis of count data: Biostatistics 306. Loglinear models – poisson regression.

REFERENCES

- Chan YH. Biostatistics 202. Logistic regression analysis. Singapore Med J 2004; 45:149-53.
- Chan YH. Biostatistics 203. Survival analysis. Singapore Med J 2004; 45:249-56.

SINGAPORE MEDICAL COUNCIL CATEGORY 3B CME PROG Multiple Choice Questions (Code SMJ 200506A)	RAMME
	True False
Question 1. In the Multinomial regression, which test gives the contribution of each independent	
variable to a model?	
(a) Model fitting information.	
(b) Goodness-of-fit.	
(c) Likelihood ratio.	
(d) Pseudo R-square.	
Question 2. Which of the following tests are not valid for a matched case-control study?	
(a) Model fitting information.	
(b) Goodness-of-fit.	
(c) Likelihood ratio.	
(d) Pseudo R-square.	
Question 3. Which link function should be used if the distribution of the categorical outcome	
for an Ordinal regression is left-skewed?	
(a) Logit.	
(b) Complementary log-log.	
(c) Negative log-log.	
(d) All of the above.	
Question 4. Which technique could be used for a n:m matched case-control study?	
(a) Multinomial logistic.	
(b) Cox regression.	
(c) Ordinal regression.	
(d) All of the above.	
Question 5. In which technique is the Parallel line test needed?	
(a) Multinomial logistic.	
(b) Cox regression.	
(c) Ordinal regression.	
(d) All of the above.	
Doctor's particulars:	
Name in full:	
MCR number: Specialty:	
Email address:	
Submission instructions:	
A. Using this answer form	
 Photocopy this answer form. Indicate your generating the "Two" of "Ealer" her [7] 	
 Indicate your responses by marking the "True" or "False" box 2 Fill in your professional particulars. 	
 4. Either post the answer form to the SMJ at 2 College Road, Singapore 169850 <u>OR</u> fax to SMJ at (65) 6224 78 	327.
B. Electronic submission	
1. Log on at the SMJ website: URL http://www.sma.org.sg/cme/smj	
2. Either download the answer form and submit to smj.cme@sma.org.sg <u>OR</u> download and print out the a this article and follow steps A. 2-4 (above) <u>OR</u> complete and submit the answer form online.	nswer form for
Deadline for submission: (June 2005 SMJ 3B CME programme): 12 noon, 25 July 2005	
Results: 1. Answers will be published in the SMJ August 2005 issue.	
 The MCR numbers of successful candidates will be posted online at http://www.sma.org.sg/cme/smj by 20 A 	ugust 2005.

- Passing mark is 60%. No mark will be deducted for incorrect answers.
 The SMJ editorial office will submit the list of successful candidates to the Singapore Medical Council.