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Abstract
Introduction: Paediatric risk of mortality and 
paediatric index of mortality (PIM) are the 
commonly-used mortality prediction models 
(MPM) in children admitted to paediatric 
intensive care unit (PICU). The current study 
was undertaken to develop a better MPM 
using artificial neural network, a domain of 
artificial intelligence. 

Methods: The purpose of this retrospective 
case series was to compare an artificial neural 
network (ANN) model and PIM with the 
observed mortality in a cohort of patients 
admitted to a five-bed PICU in a Hong Kong 
non-teaching general hospital. The patients 
were under the age of 17 years and admitted 
to our PICU from April 2001 to December 
2004. Data were collected from each patient 
admitted to our PICU. All data were randomly 
allocated to either the training or validation 
set. The data from the training set were used 
to construct a series of ANN models. The data 
from the validation set were used to validate 
the ANN and PIM models. The accuracy of 
ANN models and PIM was assessed by area 
under the receiver operator characteristics 
(ROC) curve and calibration.

Results: All data were randomly allocated to 
either the training (n=274) or validation set 
(n=273). Three ANN models were developed 
using the data from the training set, namely 
ANN8 (trained with variables required for 
PIM), ANN9 (trained with variables required 
for PIM and pre-ICU intubation) and ANN23 
(trained with variables required for ANN9 
and 14 principal ICU diagnoses). Three ANN 
models and PIM were used to predict mortality 
in the validation set. We found that PIM and 
ANN9 had a high ROC curve (PIM: 0.808, 95 
percent confidence interval 0.552 to 1.000,  
ANN9: 0.957, 95 percent confidence interval 

0.915 to 1.000), whereas ANN8 and ANN23 gave 

a suboptimal area under the ROC curve. ANN8 

required only five variables for the calculation 

of risk, compared with eight for PIM.

Conclusion: The current study demonstrated 

the process of predictive mortality risk 

model development using ANN. Further 

multicentre studies are required to produce 

a representative ANN-based mortality 

prediction model for use in different PICUs.
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Introduction
Mortality prediction models (MPMs) are used to 
describe severity of illness and probability of death.  
Paediatric risk of mortality (PRISM) and paediatric index 
of mortality (PIM) are the commonly-used MPMs in 
children admitted to the paediatric intensive care unit 
(PICU). The latest version of PRISM, PRISM III(1), was 
validated in PICUs in different countries(1-4). However, 
PRISM III has been criticised for “laborious collection 
of information” and “fee required for the usage of its 
regression equations(3)”. An alternative model, PIM(5), 
addressed these issues as the regression model is freely 
available and the number of required parameters are 
fewer than that required for PRISM. The performance 
of PIM was satisfactory in PICU cohorts in developed 
countries(2,3,6,7). However, the performance of PIM in 
predicting mortality was reported to be poor in PICU, 
with significantly different settings from the derivative 
cohort, i.e. PICUs in developing countries(8).

PIM was developed using multivariate logistic 
regression technique. Artificial neural networks 
(ANN), a domain of artificial intelligence, are flexible 
nonlinear systems which were used previously to 
model the outcomes when the relationships between 
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the variables were complex, multidimensional 
and nonlinear as found in complex biological 
systems(9). ANNs recognise the pattern in a set of  
data or training set using certain learning algorithm 
and they emerged as an integral part of paediatric 
clinical decision support system(10). Use of ANN was 
reported in predicting mortality in ICU in adults(11-16) 
and preterm neonates(17). To date, only one paediatric 
study to use ANN to predict mortality and length of 
stay in PICU has been published(18). 

The 14 variables based-model was developed 
based on 8,081 patients records, and it could predict 
mortality in PICU with 85.7% accuracy. However, 
that model has not been validated externally with 
data other than the training set. ANN models are 
well-known for “overfitting” the training data set(19). 
In order to guarantee the generalisability of ANN 
usage, the models derived from ANN should be 
externally validated using data other than the training 
data(19). In this pilot study, we developed a series of 
ANN models trained with data set from a PICU in 
Hong Kong using a learning algorithm called “Group 
method of data handling” (GMDH)(20). The objective 
of this study is to evaluate the applicability of ANN 
to model mortality in PICU. The potential of ANN in 
future MPM development was also studied.

Methods
This study was conducted in a five-bed PICU in a 
Hong Kong non-teaching general hospital. Although 
this unit received referral from neonates to young 
adults of up to 18 years old from general paediatric 
wards, accident and emergency units, surgical wards 
and operating rooms, neonates were excluded from 
the current study to allow for a less heterogeneous 
population. This unit was staffed by one medical 
officer, one senior medical officer, one consultant 
and three registered nurses with 24 hours per day 
coverage.

Data were collected on all patients admitted to our 
PICU between April 2001 and December 2004. Age, 
gender, the principal diagnosis, pre-ICU or urgent 
intubation, length of stay, all eight items of PIM 
scores and PICU survival were tabulated (Table I). 
The quality requirement of PIM(5) was used in data 
collection. Data were collected by the attending 
medical officer on a standard data sheet and stored in a 
computer database. The current study only entailed 
re-analysis of existing routine surveillance dataset 
and it did not require any patients’ contact or any 
extra intervention. Hence, informed consent was 
not obtained. Ethic approval by institutional review 
board was not regarded as necessary.

PIM-based mortality risk was computed by the 

regression equation provided by Shann et al(5). An 
updated score, PIM2(21), has been available since 2003 
but it was not used as the current study commenced 
at a much earlier date (April 2001). Some specific 
information for PIM2 was not collected, e.g. the 
details of underlying conditions. PIM was derived 
from patients aged less than or equal to 16 years, 
and patients older than 16 years were excluded from 
this study. From April 2001 to December 2004, 555 
patients were admitted to our PICU. Eight of them 
were excluded because they were older than 16 
years. The remaining 547 patients were randomly 
allocated to either the training or validation set on a 
50-50 basis. The randomisation was done by “random 
sample of cases” function in Statistical Package for 
Social Science (SPSS) version 11.0 for Macintosh 
(SPSS, Chicago, IL, USA). 

The data from the training set were transferred 
to KnowledgeMiner X 5.0 (Script Software, www.
knowledgeminer.com) on an Apple G4 Macintosh 
computer (Apple Computer Inc, Cupertino, CA, 
USA) for the development of ANN-based MPM. The 
ANN architecture used was GMDH neural network(20). 
The technical details of training mechanism and 
variables elimination mechanism are provided in 
Appendix 1. The formula of neural network model 
could be derived from this software and it was 
different from previous studies where the formulae of 
neural network were not disclosed(9,12-18).

Three neural network models were developed. 
The first model, ANN8, was trained with eight 
variables required for PIM scores. The second model, 
ANN9, was trained with eight variables required for 
PIM and one additional variable (Pre-ICU or urgent 
intubation). The third model, ANN23 was trained 
with nine variables of ANN9 and 14 principal ICU 
diagnosis variables. The additional variables to ANN9 
and ANN23 were chosen by one of the authors 
(DKN) based on personal experience and previous 
report(22). The cut-off point selections for each model 

Table I. Data collected from each patient admitted 
to our unit.

Gender/Age	 M/F

Principal diagnosis for PICU admission	

PIM: Elective admission	 Yes/No

Information mandated by PIM 	 Yes/No

Tracheal intubation (Pre-ICU 	
or urgent at anytime during  	
first hour in ICU)	 Yes/No

PICU survival	 Death during PICU 	
	 admission/survival 	
	 upon PICU discharge
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(PIM, ANN8, ANN9 and ANN23) were based on the 
following predefined principle: sensitivity equal to 
100% with the highest specificity. The mortality of 
patients in the validation set was predicted by PIM, 
ANN8, ANN9 and ANN23.

Descriptive statistics (Median with interquartile 
range for continuous variables and percentage for 
categorical variables) were used to report age, gender, 
principal ICU diagnoses, length of stay in PICU, and 
mortality. The above data were compared between 
the training and validation sets by either chi-square 
test with continuity correction or Mann-Whitney test. 
The discriminatory power, i.e. how well the mortality 
and survival in the data set were separated, of each 
model was assessed by the area under the receiver-
operator characteristic (ROC) curve. Calibration of 
models, i.e. how close the model probability is to 
the true probability, across different risk groups was 
evaluated using the method similar to Ozer et al(8). 
Standardised mortality ratio (SMR) was calculated 
for each model to compare the observed and expected 
PICU death in each risk group. Statistical analysis 
was carried out with SPSS 11.0 for Macintosh.

Results
The descriptive statistics of patients in the training 
and validation sets are presented in Table II, and no 
significant difference was found between them. Three 
ANN models were successfully developed using 274 
cases from training set. Number of variables required 
for ANN8, ANN9 and ANN23 were four, five and 
nine, respectively (Table III). The results of internal 
validation of PIM, ANN8, ANN9 and ANN23 are 
presented in Table IV. The ROC curves of four 
models are presented in Fig. 1. ANN8, ANN9 and 
ANN23 had a larger area under the curve than PIM 
although the 95% CI of area under the curve of four 
models crossed. All four models were then used 
to predict the mortality in the validation set. The 
ROC curves of four models are presented in Fig. 2 
and Table V. ANN9 had the highest discriminatory 
power, even though the 95% CI of area under the 
curve crossed that of PIM. Both ANN8 and ANN23 
give a suboptimal discriminatory power.

The calibration of the three models was evaluated 
(Table VI). SMR could not be computed in certain 
risk groups because there was no observed death. 
Goodness-of-fit test was not done because of 
insufficient number of observed death (<5) in 
all risk groups. ANN models had a similar but 
apparently poorer calibration than PIM, since the 
mortality of patients in the very low risk group was 
largely underestimated. However, three models also 
significantly overestimated the mortality in very high 

risk groups as the SMRs were significantly lower 
than one. The formula of ANN9 is listed in Fig. 3.

Discussion
The discriminatory power of ANN9 was higher than 
PIM, although the difference was not significant. 
Nonetheless, ANN9 provided additional benefit to 
PIM because the number of variables required for 
computation of risk was fewer. ANN23 and ANN8 
gave impressive discriminatory power in the training 
set but not in the validation set, indicating that 
they were misfitted models and the generalisability 
of these models were limited. The comparison of 
calibrations in the four models was inconclusive 
because of insufficient death cases in our cohort. 

The application of ANN models in medical 
problems was evaluated extensively in the literature(23). 
ANN models served as an attractive alternative to the 

Table II. Comparison between training and 
validation sets.

Variables	 Training set	 Validation set	 p-value
		  n=274	 n=273

Median age  	 1 year (5 months	 1 year (6 months	 0.634
	 (IQR)	 to 6 years)	 to 7 years)	

Male (%)	 175 (63.9%)	 161 (59.0%)	 0.277

Female (%)	 99 (37.1%)	 112 (41.0%)	

PICU death (%)	 7 (2.6%)	 5 (1.8%)	 0.775

Urgent tracheal 
	 intubation (%)	 43 (15.7%)	 31 (11.4%)	 0.174

Median length 
	 of stay (IQR)	 3 days (1 day 	 3 days (1day 	 0.298	
		  to 6 days)	 to 6 days)	

Principal PICU 
	 diagnosis (%)	

Neurological	 51 (18.6%)	 52 (19.0%)	 0.524

Cardiovascular	 10 (3.6%)	 15 (5.5%)	

Respiratory	 109 (39.8%)	 106 (38.8%)	

GI/Liver	 9 (0.3%)	 13 (4.8%)	

Renal	 7 (2.6%)	 7 (2.6%)

Postoperative	 50 (18.2%)	 44 (16.1%)	

Overdose	 3 (1.1%)	 2 (0.7%)	

Trauma	 0 (0%)	 3 (1.1%)	

Metabolic	 7 (2.6%)	 9 (3.2%)	

Sepsis	 11 (4.0%)	 3 (1.1%)	

Scald	 2 (0.7%)	 4 (1.5%)	

Haematological	 2 (0.7%)	 3 (1.1%)	

MOF	 1 (0.4%)	 0 (0.0%)	

Miscellaneous	 12 (4.4%)	 12 (4.4%)	

IQR: Interquartile range;  GI: Gastrointestinal;  MOF: Multi-organ failure
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conventional logistic regression models because of 
zero human intervention in training, theoretical higher 
accuracy, and availability of software for development(9). 
Dreiseitl et al(19) surveyed 72 studies comparing the 
medical prognostic accuracy of logistic regression and 
ANN classification models. 51% of them concluded 
that ANN models had a higher discriminatory power 
than logistic regression models, while 42% of them 
showed no difference. The remaining 7% favoured 
logistic regression models. Dreiseitl et al concluded 
that the higher percentage of studies favouring the ANN 
models may be explained by publication bias in favour  
of the new learning methods, incorrect model building 
and validation mechanism, and incorrect statistical 
analysis to compare the performance of models. 
Dreiseitl et al also recommended that future studies of 
this kind should provide details of modelling, estimate 

Table IV. Area under ROC curve in predicting 
mortality in training set, cut-off probability and 
specificity of four models.

Model	 Area under ROC 	 Cut-off  	 Specificity	
	 curve (95% CI)	 probability

PIM	 0.872 (0.748 to 0.996)	 1.26%	 50.2%

ANN8	 0.909 (0.756 to 1.000)	 0.11%	 8.7%

ANN9	 0.956 (0.903 to 1.000)	 0.46%	 81.6%

ANN23	 0.994 (0.982 to 1.000)	 9.75%	 95.9%

CI: Confidence interval

Table V. Area under ROC curve, sensitivity and 
specificity in predicting mortality in validation set 
by four models.

Model	 Area under ROC 	 Sensitivity	 Specificity	
	 curve (95% CI)

PIM	 0.808 (0.552 to 1.000)	 80.0%	 55.2%

ANN8	 0.683 (0.391 to 0.975)	 100.0%	 0.7%

ANN9	 0.957 (0.915 to 1.000)	 100.0%	 85.4%

ANN23	 0.393 (0.009 to 0.795)	 40.0%	 94.4%

CI: Confidence interval

Table III. Variables required for each model.

Model	 Relevant variables

ANN8	 Elective admission, underlying condition, mechanical ventilation, pupils response

ANN9	 Elective admission, underlying condition, mechanical ventilation, urgent tracheal intubation, pupils response

ANN23	 Respiratory diseases, cardiovascular diseases, neurological diseases, urgent tracheal intubation, pupils response, FiO2, 	
		   elective admission, underlying condition, mechanical ventilation 

PIM	 FiO2, PaO2, base excess, systolic BP, elective admission, underlying condition, mechanical ventilation, pupils response	

of the generalisation error and compare the calibration 
and discriminatory power of models.

A number of studies evaluated the accuracy of ANN 
models and logistic regression models for prediction of 
mortality in adult ICU(11-16). Most of them compared 
the ANN models with logistic models derived from 
the study cohort(12-14). Thus, the logistic regression 
equations developed by these authors were trained 
on relatively-small data sets and were not validated 
elsewhere. Three adult studies(11,15,16) compared ANN 
models with a currently accepted and already validated 
MPM called APACHE II. All studies(11,15,16) showed 
that ANN models required few number of variables 
in calculation of risk than APACHE II. The current 
study is the first study compared the accuracy of ANN  
models with a currently accepted and already validated 
MPM used in PIM. 

Fig. 1 ROC curves of four models in predicting mortality in 
the training set.

Fig. 2 ROC curves of four models in predicting mortality in 
the validation set.
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Fig. 3 Formula of ANN9.

Table VI. Calibration of three models in predicting the mortality in the validation set.

Model	  	 Probability of mortality	 	 	 	

 	  	 ≤1%	 1-5%	 5-15%	 15-30%	 >30%

PIM	 Number of patients	 107	 121	 31	 5	 9

 	 Mean risk	 0.0055	 0.0176	 0.0863	 0.2277	 0.6579

 	 Observed death	 1	 0	 2	 0	 2

 	 Expected death	 0.59	 2.13	 2.68	 1.14	 5.92

 	 SMR	 1.69 (0.00 	 NA	 0.74 (0.00 	 NA	 0.34 (0.00 	
		  to 5.60)		  to 1.77)	  	 to 0.81)

ANN9	 Number of patients	 264	 0	 0	 4	 5

 	 Mean risk	 0.0012	 -	 -	 0.300	 0.984

 	 Observed death	 3	 -	 -	 0	 2

 	 Expected death	 0.3168	 -	 -	 1.2	 4.92

 	 SMR	 9.47 (0.00 	 NA	 NA	 NA	 0.41 (0.00 	
		  to 20.55)				    to 0.97)

ANN23	 Number of patients	 247	 0	 16	 1	 9

 	 Mean Risk	 0.0036	 -	 0.0988	 0.28	 0.791

 	 Observed death	 3	 -	 2	 0	 0

 	 Expected death	 0.8892	 -	 1.5808	 0.28	 7.119

 	 SMR	 3.37 (0.00 	 NA	 1.27 (0.00 	 NA	 NA	
		  to 7.18)		  to 3.03)	

*	SMR: Standardised mortality ratio;  NA: Not available

BOOK = Elective admission (Yes = 1, No = 0) (15%)
CONDIT = Underlying condition  (Yes = 1, No = 0) (18%)
IPPV = Mechanical ventilation (Yes = 1, No = 0) (16%)
ETT = Urgent tracheal intubation (Yes = 1, No = 0) (25%)
PUPILS = Pupils response (26%)

The percentage in parentheses reflect the contribution of an input to reducing the model error.
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Our study was similar to adult studies done in 
the UK and Canada(11,15) that found no significant 
difference in discriminatory power between 
ANN models and validated MPM. However, the 
current study was different from an Indian study 
by Nimgaonkar et al(16) who found a significantly 
higher discriminatory power in ANN compared with 
APACHE II. Nimgaonkar et al commented that the 
significantly superior discriminatory power in ANN 
models in the Indian cohort might be explained by 
the fact that the ANN models in Nimgaonkar et al’s 
study were developed using the data from an Indian 
ICU while other ANN models(11,15) were developed 
in ICUs in developed countries. The casemix, 
admission criteria, standards of care and availability 
of human and material resource in Indian ICU were 
different from ICUs in developed countries where 
the APACHE II model was developed. 

Walczak and Scorpio(18) reported the only study 
evaluating the ANN models in predicting length of 
stay and acuity of care in PICU using the data available 
in the first ten minutes of admission. ANN derived 
by Walczak et al could accurately predict 85.7% of 
mortality in a PICU. However, the high accuracy 
of ANN model reported by Walczak et al may not 
be generalised, as the figures reported was derived 
from the training set only. No external validation 
using data other than the training set was attempted 
by Walczak et al. The ANN23 model in the current 
study served as an excellent example to illustrate the 
importance of external validation. ANN23 model 
derived in the current study provided the highest 
discriminatory power among four models. However, 
the discriminatory power was significantly dropped 
in the validation set. This drop in discriminatory 
power can be explained by misfitting. The higher 
complexity of ANN models compared to logistic 
regression made ANN models more susceptible to 
overfitting. An overfitted model was not useful in 
predicting the outcome in data other than the training 
set. The problem of overfitting cannot be diagnosed 
by internal validation only(19).

Both PIM and ANN9 gave a similar 
discriminatory power in both the training set and 
validation set, indicating the low possibility of 
overfitting. We evaluated three ANN models because 
model selection is a very important strategy to 
prevent misfitting in the ANN model. The addition 
of the variable “Pre-ICU or urgent intubation” in 
ANN9 on top of the variables required for PIM was 
based on personal experience of one of the authors 
(DKN) and the study by Earle et al(22), who found that 
tracheal intubation was associated with an increased 
mortality rate of patients in PICU. 

The most important finding in the current study 
is that ANN9 could provide a similar discriminatory 
power to PIM by using less data, i.e. only five binary 
variables, compared with eight variables required for 
PIM. Thus, the ANN9 model required lesser effort 
in data collection than PIM with similar accuracy. 
It is our experience that the collection of the four 
continuous variables in PIM is cumbersome and gives 
rise to inaccuracy. The main disadvantage was the 
complex calculation of risk by ANN9 that required 
a programmable calculator or computer. The authors 
had written a Python script for calculation of risk 
score using ANN9 which can be executed in either 
desktop computer or personal data assistant. 

One of the main problems of the current study 
was the limited sample size which hindered the 
measurement of calibrations in all models. Our PICU 
was a low risk unit with only 12 mortality cases within 
four years. Upon randomisation to either the training 
or validation set, mortality cases in each set further 
reduced to seven and five, respectively. This is less 
than the number of ten death cases for each group to 
provide a more reliable ROC analysis(24). Moreover, 
the study by Clermont et al(14) assessed the robustness 
of ANN-based MPM modelling using small sample 
size and suggested that a training set of less than 
800 cases was generally inadequate. However, the 
same study also demonstrated that decreased sample 
size from 1,200 to 200 cases in a training set did not 
significantly change the misclassification rates of 
ANN-derived MPM. 

Another problem with our study was the long 
period of data collection, i.e. four years, and the 
annual advances in our PICU may have decalibrated 
all models in this study. Similar to another study(16), 
we randomly stratified all cases to training and 
validation sets in order to minimise the influence of 
technological advancement and increased resources. 
We conducted our study at a single institution, 
meaning that the external validity of ANN9 is not 
proven. One of the important features of the ANN 
model is the retraining potential(17). Retraining can 
be done in case of advances in medical care, or 
simply in case of additional data becoming available. 
Theoretically, the ANN model can achieve a higher 
discriminatory and calibration power by repeated 
retraining with new data. 

This pilot study can be easily extended by 
incorporating future data from continuous surveillance 
of our PICU. However, it is advisable to develop 
a MPM based on the data from different centres 
because a multicentre study allows for collection of 
a large amount of data in a short period of time. This 
pilot study showed that ANN could be regarded as 
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an alternative to conventional logistic regression for 
modelling PICU mortality. Due to inadequacies in 
the current study (Table VI), it is premature to draw 
any conclusions from the model’s performance. 
However, ANN is likely to produce a MPM with a 
similar discriminatory power to those developed by 
logistic regression (PIM) but require fewer number of 
variables. In order to produce a representative ANN- 
based MPM, we recommended MPM developers 
to incorporate the ICUs from different regions around  
the world(8,16). In conclusion, our study demonstrated 
the process of MPM development using ANN. 
Further multicentre studies are required to produce 
a representative ANN-based mortality prediction 
model for use in different PICUs.
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Appendix I: Technical details of GMDH.
The software used for ANN development was Knowledge Miner X. GMDH input-output model was used for modelling of ANN8, 
ANN9 and ANN 22. The paper by Ivakhnenko(20) provided the details of the mathematical derivative process of this algorithm. The 
best-fit model derived by GMDH was presented as a Kolmogorov-Gabor polynomial (Fig. 2).

Variables are the inputs of ANN model.  The mathematical combination of two inputs is called a “neuron”.  Thus, a basic neuron (z1) is actually 
equal to:

z1 = w0 + w1(u1) + w2(u2)
where w0, w1, w2 are polynomial coefficients and u1 and u2 are inputs.

Neurons can also be mathematically combined to form another neuron.  In Fig. 2, znx are all neurons.  z22 is a neuron produced by 
combination of z11 and z12.  Thus, a neuron (zn+1) can also be:

zn+1 = w0 + w1 (zn1) + w2 (zn2)
where w0, w1, w2 are polynomial coefficients and zn1 and zn2 are neurons.

The output (outcome, y) of an ANN model is a function of neurons too.
y = w0 + w1 (zn1) + w2 (zn2)

A hierarchical multilayer network of neurons is generated. “n” in znx is actually the layer number of that particular neuron.

Training a GMDH network involves the following processes:
1.	 Finding out the method of mathematical combination of inputs and neurons based on the outcome variable.
2. 	 Selecting the relevant neurons which is useful for our prediction.

Training in a GMDH network is based on evolution principle. Computers generated all possible inputs and the best-fitted 
method of combination of inputs with respect to the outcome. The selection of relevant inputs required for an ANN model 
was based on a user-defined criterion. This criterion is governed by the percentage of performance (in terms of accuracy) which 
increases if a certain input is added to that model. In this study, we defined the inputs with less than 10% increase in performance to 
be eliminated from the ANN model.  We restricted the maximum number of layers in all of our models to five.


