Liow MH, Chin PL, Tay KJ, Chia SL, Lo NN, Yeo SJ
Correspondence: Dr Liow Ming Han Lincoln, lincoln.liow.m.h@sgh.com.sg
ABSTRACT
INTRODUCTION The use of robotics in total knee arthroplasty (TKA) has been shown to minimise human error, as well as improve the accuracy and precision of component implantation and mechanical axis alignment. The present study aimed to demonstrate that robot-assisted TKA using ROBODOC® is safe and capable of producing a consistent and accurate postoperative mechanical axis.
METHODS We prospectively recruited 27 consecutive patients who underwent robot-assisted TKA between May and December 2012. Two patients were excluded from the study due to intraoperative technical problems with the robot. Long-leg radiography and computed tomography were performed prior to surgery, and used for mechanical axis measurements and component sizing. DigiMatch™ ROBODOC® Surgical System software version 4.3.6 (Curexo Technology Corp, Fremont, CA, USA) was used in all cases to perform bone cuts in accordance with the preoperative plan.
RESULTS The postoperative coronal mechanical alignment was within 3 degrees, with a mean alignment of –0.4 ± 1.7 degrees, confirming the accuracy of the preoperative surgical plan and bone cuts. The mean operating time was 96 ± 15 min, and preoperative planning yielded 100% implant sizing accuracy.
CONCLUSION Robotics has the potential to enable surgeons to consistently attain ideal postoperative alignment. The use of bone movement monitors and an integrated navigation system enhances the safety profi le of ROBODOC® by minimising errors. However, the role of the surgeon in TKA is still vital, as the surgeon is ultimately in charge of planning the surgery, its execution and ensuring soft tissue balance during TKA.
Keywords: coronal mechanical axis alignment, ROBODOC®, robot-assisted, robotic surgery, total knee arthroplasty
Singapore Med J 2014; 55(10): 529-534; http://dx.doi.org/10.11622/smedj.2014136
REFERENCES
1. Paul HA, Bargar WL, Mittlestadt B, et al. Development of a surgical robot for cementless total hip arthroplasty. Clin Orthop Relat Res 1992; 57-66. PMid:1446455 | ||||
2. Park SE, Lee CT. Comparison of robotic-assisted and conventional manual implantation of a primary total knee arthroplasty. J Arthroplasty 2007; 22:1054-9. http://dx.doi.org/10.1016/j.arth.2007.05.036 | ||||
3. Tew M, Waugh W. Tibiofemoral alignment and the results of knee replacement. J Bone Joint Surg Br 1985; 67:551-6. PMid:4030849 | ||||
4. Bellemans J, Vandenneucker H, Vanlauwe J. Robot-assisted total knee arthroplasty. Clin Orthop Relat Res 2007; 464:111-6. PMid:17563698 | ||||
5. Song EK, Seon JK, Yim JH, Netravali NA, Bargar WL. Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin Orthop Relat Res 2013; 471:118-26. http://dx.doi.org/10.1007/s11999-012-2407-3 | ||||
6. Borner M, Wiesel U, Ditzen W. Clinical experiences with Robodoc and the Duracon Total Knee. In: Stiehl JB, Konermann WH, Haaker RG, eds. Navigation and Robotics in Total Joint and Spine Surgery. Berlin: Springer, 2004: 362-6. http://dx.doi.org/10.1007/978-3-642-59290-4_51 | ||||
7. Mai S, Lorke C, Siebert W. Clinical results with the robot-assisted Caspar System and the Search-Evolution Prosthesis. In: Stiehl JB, Konermann WH, Haaker RG, eds. Navigation and Robotics in Total Joint and Spine Surgery. Berlin: Springer, 2004: 355-61. http://dx.doi.org/10.1007/978-3-642-59290-4_50 | ||||
8. Decking J, Theis C, Achenbach T, et al. Robotic total knee arthroplasty: the accuracy of CT-based component placement. Acta Orthop Scand 2004; 75:573-9. http://dx.doi.org/10.1080/00016470410001448 | ||||
9. Kharwadkar N, Kent RE, Sharara KH, Naique S. 5 degrees to 6 degrees of distal femoral cut for uncomplicated primary total knee arthroplasty: is it safe? Knee 2006; 13:57-60. http://dx.doi.org/10.1016/j.knee.2005.07.001 | ||||
10. Bardakos N, Cil A, Thompson B, Stocks G. Mechanical axis cannot be restored in total knee arthroplasty with a fixed valgus resection angle: a radiographic study. J Arthroplasty 2007; 22:85-9. http://dx.doi.org/10.1016/j.arth.2007.04.018 | ||||
11. Churchill DL, Incavo SJ, Johnson CC, Beynnon BD. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 1998; 111-8. http://dx.doi.org/10.1097/00003086-199811000-00016 | ||||
12. Kawamura H, Bourne RB. Factors affecting range of flexion after total knee arthroplasty. J Orthop Sci 2001; 6:248-52. http://dx.doi.org/10.1007/s007760100043 | ||||
13. Fehring TK. Rotational malalignment of the femoral component in total knee arthroplasty. Clin Orthop Relat Res 2000; 72-9. http://dx.doi.org/10.1097/00003086-200011000-00010 | ||||
14. Miller MC, Berger RA, Petrella AJ, Karmas A, Rubash HE. Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop Relat Res 2001; 38-45. http://dx.doi.org/10.1097/00003086-200111000-00005 | ||||
15. Nagamine R, Miura H, Bravo CV, et al. Anatomic variations should be considered in total knee arthroplasty. J Orthop Sci 2000; 5:232-7. http://dx.doi.org/10.1007/s007760050157 | ||||
16. Bellemans J. Osseointegration of porous coated knee arthroplasty. The influence of component coating type in sheep. Acta Orthop Scand Suppl 1999; 288:1-35. PMid:10949554 | ||||
17. Denis K, Van Ham G, Vander Sloten J, et al. Infl uence of bone milling parameters on the temperature rise, milling forces and surface flatness in view of robot-assisted total knee arthroplasty. Int Congr Ser 2001; 1230:300-6. http://dx.doi.org/10.1016/S0531-5131(01)00067-X | ||||
18. Eriksson R, Albrektsson T. The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J Oral Maxillofac Surg 1984; 42:705-11. http://dx.doi.org/10.1016/0278-2391(84)90417-8 | ||||
19. Choong PF, Dowsey MM, Stoney JD. Does accurate anatomical alignment result in better function and quality of life? Comparing conventional and computer-assisted total knee arthroplasty. J Arthroplasty 2009; 24:560-9. http://dx.doi.org/10.1016/j.arth.2008.02.018 | ||||
20. Jenny JY, Clemens U, Kohler S, et al. Consistency of implantation of a total knee arthroplasty with a non-image-based navigation system: a case control study of 235 cases compared with 235 conventionally implanted prostheses. J Arthroplasty 2005; 20:832-9. http://dx.doi.org/10.1016/j.arth.2005.02.002 | ||||
21. Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg Br 1991; 73:709-14. PMid:1894655 | ||||
22. Lotke PA, Ecker ML. Infl uence of positioning of the prosthesis in total knee replacement. J Bone Joint Surg Am 1977; 59:77-9. PMid:833180 | ||||
23. Song EK, Seon JK, Park SJ, et al. Simultaneous bilateral total knee arthroplasty with robotic and conventional techniques: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc 2011; 19:1069-76. http://dx.doi.org/10.1007/s00167-011-1400-9 | ||||
24. Siebert W, Mai S, Kober R, Heeckt PF. Technique and first clinical results of ROBODOC-assisted total knee replacement. Knee 2002; 9:173-80. http://dx.doi.org/10.1016/S0968-0160(02)00015-7 | ||||
25. Chauhan SK, Scott RG, Breidahl W, Beaver RJ. Computer-assisted knee arthroplasty versus a conventional jig-based technique. A randomized, prospective trial. J Bone Joint Surg Br 2004; 86:372-7. http://dx.doi.org/10.1302/0301-620X.86B3.14643 | ||||
26. Bäthis H, Perlick L, Tingart M, et al. Intraoperative cutting errors in total knee arthroplasty. Arch Orthop Trauma Surg 2005; 125:16-20. http://dx.doi.org/10.1007/s00402-004-0759-1 | ||||
27. Chin PL, Yang KY, Yeo SJ, Lo NN. Randomized control trial comparing radiographic total knee arthroplasty implant placement using computer navigation versus conventional technique. J Arthroplasty 2005; 20:618-26. http://dx.doi.org/10.1016/j.arth.2005.04.004 | ||||
28. Confalonieri N, Manzotti A, Pullen C, Ragone V. Computer-assisted technique versus intramedullary and extramedullary alignment systems in total knee replacement: a radiological comparison. Acta Orthop Belg 2005; 71:703-9. PMid:16459861 | ||||
29. Sparmann M, Wolke B, Czupalla H, Banzer D, Zink A. Positioning of total knee arthroplasty with and without navigation support. A prospective, randomised study. J Bone Joint Surg Br 2003; 85:830-5. PMid:12931800 | ||||
30. Oberst M, Berstch C, Würstlin S, Holz U. [CT analysis of leg alignment after conventional vs. navigated knee prosthesis implantation. Initial results of a controlled, prospective, and randomized study]. Unfallchirurg 2003; 106:941-8. German. PMid:14634738 | ||||
31. Saragaglia D, Picard F, Chaussard C, et al. [Computer-assisted knee arthroplasty: comparison with a conventional procedure. Results of 50 cases in a prospective randomized study]. Rev Chir Orthop Reparatrice Appar Mot 2001; 87:18-28. French. | ||||
32. Bonutti P, Dethmers D, Stiehl JB. Case report: femoral shaft fracture resulting from femoral tracker placement in navigated TKA. Clin Orthop Relat Res 2008; 466:1499-502. http://dx.doi.org/10.1007/s11999-008-0150-6 | ||||
33. Li CH, Chen TH, Su YP, et al. Periprosthetic femoral supracondylar fracture after total knee arthroplasty with navigation system. J Arthroplasty 2008; 23:304-7. http://dx.doi.org/10.1016/j.arth.2006.12.049 | ||||
34. Chun YS, Kim KI, Cho YJ, et al. Causes and patterns of aborting a robot-assisted arthroplasty. J Arthroplasty 2011; 26:621-5. http://dx.doi.org/10.1016/j.arth.2010.05.017 | ||||
35. Peersman G, Laskin R, Davis J, Peterson MG, Richart T. Prolonged operative time correlates with increased infection rate after total knee arthroplasty. HSS J 2006; 2:70-2. http://dx.doi.org/10.1007/s11420-005-0130-2 | ||||
36. Bargar WL. Robots in orthopaedic surgery: past, present, and future. Clin Orthop Relat Res 2007; 463:31-6. PMid:17960673 |