Razalee S, Poh BK, Ismail MN
Correspondence: Dr Razalee Sedek, razalee@ukm.my
ABSTRACT
Introduction The basal metabolic rate (BMR) is essential in deriving estimates of energy requirements for a population. The aim of this study was to measure the BMR in order to derive a predictive equation for the Malaysian Armed Forces (MAF) naval trainees.
Methods A total of 79 naval trainees aged 18 to 25 years from a training centre (Group A) and on board a ship (Group B) participated in the study. Anthropometric measurements included height and weight. Body fat and free fat mass were measured using the bioelectrical impedance analysis method. BMR was measured by indirect calorimetry with a canopy system.
Results The mean height, weight and body fat for Group A was 1.67 +/- 0.04 m, 61.0 +/- 3.9 kg and 12.7 percent +/- 2.5 percent, respectively, and 1.67 +/- 0.05 m, 62.3 +/- 6.2 kg and 14.0 percent +/- 3.5 percent, respectively, for Group B. The mean BMR for Group A (6.28 +/- 0.40 MJ/day) did not differ significantly (p is more than 0.05) from that of Group B (6.16 +/- 0.67 MJ/day). The Food and Agriculture Organization/World Health Organization/United Nations University and the Henry and Rees equations overestimated the measured BMR by 9 percent (p is less than 0.001) and 0.5 percent (p is more than 0.05), respectively, while the Ismail et al equation underestimated the measured BMR by 5.6 percent (p is less than 0.001). A predictive equation, BMR = 3.316 + 0.047 (weight in kg) expressed in MJ/day with weight as the only independent variable, was derived using regression analysis.
Conclusion We recommend that this predictive equation be used to estimate the energy requirements of MAF naval trainees.
Keywords: armed forces, basal metabolic rate, energy requirement, indirect calorimetry, predictive equation
Singapore Med J 2010; 51(8): 635-640